| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version | ||
| Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
| Ref | Expression |
|---|---|
| a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
| 3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1dd 51 merco2 1736 equvel 2454 propeqop 5462 funopsn 7102 xpexr 7874 resf1extb 7890 omordi 8507 omwordi 8512 odi 8520 omass 8521 oen0 8527 oewordi 8532 oewordri 8533 nnmwordi 8576 omabs 8592 fisupg 9211 fiinfg 9428 cantnfle 9600 cantnflem1 9618 pr2neOLD 9934 gchina 10628 nqereu 10858 supsrlem 11040 1re 11150 lemul1a 12012 xlemul1a 13224 xrsupsslem 13243 xrinfmsslem 13244 xrub 13248 supxrunb1 13255 supxrunb2 13256 difelfzle 13578 addmodlteq 13887 seqcl2 13961 facdiv 14228 facwordi 14230 faclbnd 14231 pfxccat3 14675 dvdsabseq 16259 nn0rppwr 16507 divgcdcoprm0 16611 2mulprm 16639 exprmfct 16650 prmfac1 16666 pockthg 16853 nzerooringczr 21422 cply1mul 22216 mdetralt 22528 cmpsub 23320 fbfinnfr 23761 alexsubALTlem2 23968 alexsubALTlem3 23969 ovolicc2lem3 25453 dvfsumlem2 25966 fta1g 26108 fta1 26249 taylply2 26308 mulcxp 26627 cxpcn3lem 26690 gausslemma2dlem4 27313 colinearalg 28890 upgrwlkdvdelem 29716 umgr2wlk 29929 clwwlknwwlksn 30017 clwwlknonex2lem2 30087 dmdbr5ati 32401 cvmlift3lem4 35302 antnestlaw2 35672 dfon2lem9 35772 fscgr 36061 colinbtwnle 36099 broutsideof2 36103 a1i14 36281 a1i24 36282 ordcmp 36428 bj-peircestab 36534 wl-aleq 37516 itg2addnc 37661 filbcmb 37727 mpobi123f 38149 mptbi12f 38153 ac6s6 38159 ltrnid 40122 cdleme25dN 40343 ntrneiiso 44073 ee323 44491 vd13 44584 vd23 44585 ee03 44723 ee23an 44739 ee32 44741 ee32an 44743 ee123 44745 iccpartgt 47421 stgoldbwt 47770 tgoldbach 47811 gpgedg2iv 48051 |
| Copyright terms: Public domain | W3C validator |