| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version | ||
| Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
| Ref | Expression |
|---|---|
| a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
| 3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1dd 51 merco2 1737 equvel 2456 propeqop 5445 funopsn 7081 xpexr 7848 resf1extb 7864 omordi 8481 omwordi 8486 odi 8494 omass 8495 oen0 8501 oewordi 8506 oewordri 8507 nnmwordi 8550 omabs 8566 fisupg 9172 fiinfg 9385 cantnfle 9561 cantnflem1 9579 gchina 10590 nqereu 10820 supsrlem 11002 1re 11112 lemul1a 11975 xlemul1a 13187 xrsupsslem 13206 xrinfmsslem 13207 xrub 13211 supxrunb1 13218 supxrunb2 13219 difelfzle 13541 addmodlteq 13853 seqcl2 13927 facdiv 14194 facwordi 14196 faclbnd 14197 pfxccat3 14641 dvdsabseq 16224 nn0rppwr 16472 divgcdcoprm0 16576 2mulprm 16604 exprmfct 16615 prmfac1 16631 pockthg 16818 nzerooringczr 21417 cply1mul 22211 mdetralt 22523 cmpsub 23315 fbfinnfr 23756 alexsubALTlem2 23963 alexsubALTlem3 23964 ovolicc2lem3 25447 dvfsumlem2 25960 fta1g 26102 fta1 26243 taylply2 26302 mulcxp 26621 cxpcn3lem 26684 gausslemma2dlem4 27307 colinearalg 28888 upgrwlkdvdelem 29714 umgr2wlk 29927 clwwlknwwlksn 30018 clwwlknonex2lem2 30088 dmdbr5ati 32402 cvmlift3lem4 35366 antnestlaw2 35736 dfon2lem9 35833 fscgr 36124 colinbtwnle 36162 broutsideof2 36166 a1i14 36344 a1i24 36345 ordcmp 36491 bj-peircestab 36597 wl-aleq 37579 itg2addnc 37724 filbcmb 37790 mpobi123f 38212 mptbi12f 38216 ac6s6 38222 ltrnid 40244 cdleme25dN 40465 ntrneiiso 44194 ee323 44611 vd13 44704 vd23 44705 ee03 44843 ee23an 44859 ee32 44861 ee32an 44863 ee123 44865 iccpartgt 47537 stgoldbwt 47886 tgoldbach 47927 gpgedg2iv 48177 |
| Copyright terms: Public domain | W3C validator |