![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version |
Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
Ref | Expression |
---|---|
a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1dd 51 merco2 1733 equvel 2459 propeqop 5517 funopsn 7168 xpexr 7941 omordi 8603 omwordi 8608 odi 8616 omass 8617 oen0 8623 oewordi 8628 oewordri 8629 nnmwordi 8672 omabs 8688 fisupg 9322 fiinfg 9537 cantnfle 9709 cantnflem1 9727 pr2neOLD 10043 gchina 10737 nqereu 10967 supsrlem 11149 1re 11259 lemul1a 12119 xlemul1a 13327 xrsupsslem 13346 xrinfmsslem 13347 xrub 13351 supxrunb1 13358 supxrunb2 13359 difelfzle 13678 addmodlteq 13984 seqcl2 14058 facdiv 14323 facwordi 14325 faclbnd 14326 pfxccat3 14769 dvdsabseq 16347 nn0rppwr 16595 divgcdcoprm0 16699 2mulprm 16727 exprmfct 16738 prmfac1 16754 pockthg 16940 nzerooringczr 21509 cply1mul 22316 mdetralt 22630 cmpsub 23424 fbfinnfr 23865 alexsubALTlem2 24072 alexsubALTlem3 24073 ovolicc2lem3 25568 dvfsumlem2 26082 fta1g 26224 fta1 26365 taylply2 26424 mulcxp 26742 cxpcn3lem 26805 gausslemma2dlem4 27428 colinearalg 28940 upgrwlkdvdelem 29769 umgr2wlk 29979 clwwlknwwlksn 30067 clwwlknonex2lem2 30137 dmdbr5ati 32451 cvmlift3lem4 35307 dfon2lem9 35773 fscgr 36062 colinbtwnle 36100 broutsideof2 36104 a1i14 36283 a1i24 36284 ordcmp 36430 bj-peircestab 36536 wl-aleq 37516 itg2addnc 37661 filbcmb 37727 mpobi123f 38149 mptbi12f 38153 ac6s6 38159 ltrnid 40118 cdleme25dN 40339 ntrneiiso 44081 ee323 44506 vd13 44599 vd23 44600 ee03 44739 ee23an 44755 ee32 44757 ee32an 44759 ee123 44761 iccpartgt 47352 stgoldbwt 47701 tgoldbach 47742 |
Copyright terms: Public domain | W3C validator |