Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version |
Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
Ref | Expression |
---|---|
a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1dd 51 merco2 1740 equvel 2456 propeqop 5415 funopsn 7002 xpexr 7739 omordi 8359 omwordi 8364 odi 8372 omass 8373 oen0 8379 oewordi 8384 oewordri 8385 nnmwordi 8428 omabs 8441 fisupg 8992 fiinfg 9188 cantnfle 9359 cantnflem1 9377 pr2ne 9692 gchina 10386 nqereu 10616 supsrlem 10798 1re 10906 lemul1a 11759 xlemul1a 12951 xrsupsslem 12970 xrinfmsslem 12971 xrub 12975 supxrunb1 12982 supxrunb2 12983 difelfzle 13298 addmodlteq 13594 seqcl2 13669 facdiv 13929 facwordi 13931 faclbnd 13932 pfxccat3 14375 dvdsabseq 15950 divgcdcoprm0 16298 2mulprm 16326 exprmfct 16337 prmfac1 16354 pockthg 16535 cply1mul 21375 mdetralt 21665 cmpsub 22459 fbfinnfr 22900 alexsubALTlem2 23107 alexsubALTlem3 23108 ovolicc2lem3 24588 fta1g 25237 fta1 25373 mulcxp 25745 cxpcn3lem 25805 gausslemma2dlem4 26422 colinearalg 27181 upgrwlkdvdelem 28005 umgr2wlk 28215 clwwlknwwlksn 28303 clwwlknonex2lem2 28373 dmdbr5ati 30685 cvmlift3lem4 33184 dfon2lem9 33673 fscgr 34309 colinbtwnle 34347 broutsideof2 34351 a1i14 34416 a1i24 34417 ordcmp 34563 bj-peircestab 34660 wl-aleq 35621 itg2addnc 35758 filbcmb 35825 mpobi123f 36247 mptbi12f 36251 ac6s6 36257 ltrnid 38076 cdleme25dN 38297 nn0rppwr 40254 ntrneiiso 41590 ee323 42017 vd13 42110 vd23 42111 ee03 42250 ee23an 42266 ee32 42268 ee32an 42270 ee123 42272 iccpartgt 44767 stgoldbwt 45116 tgoldbach 45157 nzerooringczr 45518 |
Copyright terms: Public domain | W3C validator |