| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version | ||
| Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
| Ref | Expression |
|---|---|
| a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
| 3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1dd 51 merco2 1736 equvel 2454 propeqop 5462 funopsn 7102 xpexr 7874 resf1extb 7890 omordi 8507 omwordi 8512 odi 8520 omass 8521 oen0 8527 oewordi 8532 oewordri 8533 nnmwordi 8576 omabs 8592 fisupg 9211 fiinfg 9428 cantnfle 9600 cantnflem1 9618 pr2neOLD 9934 gchina 10628 nqereu 10858 supsrlem 11040 1re 11150 lemul1a 12012 xlemul1a 13224 xrsupsslem 13243 xrinfmsslem 13244 xrub 13248 supxrunb1 13255 supxrunb2 13256 difelfzle 13578 addmodlteq 13887 seqcl2 13961 facdiv 14228 facwordi 14230 faclbnd 14231 pfxccat3 14675 dvdsabseq 16259 nn0rppwr 16507 divgcdcoprm0 16611 2mulprm 16639 exprmfct 16650 prmfac1 16666 pockthg 16853 nzerooringczr 21366 cply1mul 22159 mdetralt 22471 cmpsub 23263 fbfinnfr 23704 alexsubALTlem2 23911 alexsubALTlem3 23912 ovolicc2lem3 25396 dvfsumlem2 25909 fta1g 26051 fta1 26192 taylply2 26251 mulcxp 26570 cxpcn3lem 26633 gausslemma2dlem4 27256 colinearalg 28813 upgrwlkdvdelem 29639 umgr2wlk 29852 clwwlknwwlksn 29940 clwwlknonex2lem2 30010 dmdbr5ati 32324 cvmlift3lem4 35282 antnestlaw2 35652 dfon2lem9 35752 fscgr 36041 colinbtwnle 36079 broutsideof2 36083 a1i14 36261 a1i24 36262 ordcmp 36408 bj-peircestab 36514 wl-aleq 37496 itg2addnc 37641 filbcmb 37707 mpobi123f 38129 mptbi12f 38133 ac6s6 38139 ltrnid 40102 cdleme25dN 40323 ntrneiiso 44053 ee323 44471 vd13 44564 vd23 44565 ee03 44703 ee23an 44719 ee32 44721 ee32an 44723 ee123 44725 iccpartgt 47401 stgoldbwt 47750 tgoldbach 47791 gpgedg2iv 48031 |
| Copyright terms: Public domain | W3C validator |