| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version | ||
| Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
| Ref | Expression |
|---|---|
| a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
| 3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1dd 51 merco2 1736 equvel 2461 propeqop 5487 funopsn 7143 xpexr 7919 resf1extb 7935 omordi 8583 omwordi 8588 odi 8596 omass 8597 oen0 8603 oewordi 8608 oewordri 8609 nnmwordi 8652 omabs 8668 fisupg 9301 fiinfg 9518 cantnfle 9690 cantnflem1 9708 pr2neOLD 10024 gchina 10718 nqereu 10948 supsrlem 11130 1re 11240 lemul1a 12100 xlemul1a 13309 xrsupsslem 13328 xrinfmsslem 13329 xrub 13333 supxrunb1 13340 supxrunb2 13341 difelfzle 13663 addmodlteq 13969 seqcl2 14043 facdiv 14310 facwordi 14312 faclbnd 14313 pfxccat3 14757 dvdsabseq 16337 nn0rppwr 16585 divgcdcoprm0 16689 2mulprm 16717 exprmfct 16728 prmfac1 16744 pockthg 16931 nzerooringczr 21446 cply1mul 22239 mdetralt 22551 cmpsub 23343 fbfinnfr 23784 alexsubALTlem2 23991 alexsubALTlem3 23992 ovolicc2lem3 25477 dvfsumlem2 25990 fta1g 26132 fta1 26273 taylply2 26332 mulcxp 26651 cxpcn3lem 26714 gausslemma2dlem4 27337 colinearalg 28894 upgrwlkdvdelem 29723 umgr2wlk 29936 clwwlknwwlksn 30024 clwwlknonex2lem2 30094 dmdbr5ati 32408 cvmlift3lem4 35349 dfon2lem9 35814 fscgr 36103 colinbtwnle 36141 broutsideof2 36145 a1i14 36323 a1i24 36324 ordcmp 36470 bj-peircestab 36576 wl-aleq 37558 itg2addnc 37703 filbcmb 37769 mpobi123f 38191 mptbi12f 38195 ac6s6 38201 ltrnid 40159 cdleme25dN 40380 ntrneiiso 44082 ee323 44500 vd13 44593 vd23 44594 ee03 44732 ee23an 44748 ee32 44750 ee32an 44752 ee123 44754 iccpartgt 47408 stgoldbwt 47757 tgoldbach 47798 |
| Copyright terms: Public domain | W3C validator |