| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version | ||
| Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
| Ref | Expression |
|---|---|
| a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
| 3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1dd 51 merco2 1736 equvel 2454 propeqop 5467 funopsn 7120 xpexr 7894 resf1extb 7910 omordi 8530 omwordi 8535 odi 8543 omass 8544 oen0 8550 oewordi 8555 oewordri 8556 nnmwordi 8599 omabs 8615 fisupg 9235 fiinfg 9452 cantnfle 9624 cantnflem1 9642 pr2neOLD 9958 gchina 10652 nqereu 10882 supsrlem 11064 1re 11174 lemul1a 12036 xlemul1a 13248 xrsupsslem 13267 xrinfmsslem 13268 xrub 13272 supxrunb1 13279 supxrunb2 13280 difelfzle 13602 addmodlteq 13911 seqcl2 13985 facdiv 14252 facwordi 14254 faclbnd 14255 pfxccat3 14699 dvdsabseq 16283 nn0rppwr 16531 divgcdcoprm0 16635 2mulprm 16663 exprmfct 16674 prmfac1 16690 pockthg 16877 nzerooringczr 21390 cply1mul 22183 mdetralt 22495 cmpsub 23287 fbfinnfr 23728 alexsubALTlem2 23935 alexsubALTlem3 23936 ovolicc2lem3 25420 dvfsumlem2 25933 fta1g 26075 fta1 26216 taylply2 26275 mulcxp 26594 cxpcn3lem 26657 gausslemma2dlem4 27280 colinearalg 28837 upgrwlkdvdelem 29666 umgr2wlk 29879 clwwlknwwlksn 29967 clwwlknonex2lem2 30037 dmdbr5ati 32351 cvmlift3lem4 35309 antnestlaw2 35679 dfon2lem9 35779 fscgr 36068 colinbtwnle 36106 broutsideof2 36110 a1i14 36288 a1i24 36289 ordcmp 36435 bj-peircestab 36541 wl-aleq 37523 itg2addnc 37668 filbcmb 37734 mpobi123f 38156 mptbi12f 38160 ac6s6 38166 ltrnid 40129 cdleme25dN 40350 ntrneiiso 44080 ee323 44498 vd13 44591 vd23 44592 ee03 44730 ee23an 44746 ee32 44748 ee32an 44750 ee123 44752 iccpartgt 47425 stgoldbwt 47774 tgoldbach 47815 gpgedg2iv 48055 |
| Copyright terms: Public domain | W3C validator |