![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version |
Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
Ref | Expression |
---|---|
a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1dd 51 merco2 1739 equvel 2456 propeqop 5508 funopsn 7146 xpexr 7909 omordi 8566 omwordi 8571 odi 8579 omass 8580 oen0 8586 oewordi 8591 oewordri 8592 nnmwordi 8635 omabs 8650 fisupg 9291 fiinfg 9494 cantnfle 9666 cantnflem1 9684 pr2neOLD 10000 gchina 10694 nqereu 10924 supsrlem 11106 1re 11214 lemul1a 12068 xlemul1a 13267 xrsupsslem 13286 xrinfmsslem 13287 xrub 13291 supxrunb1 13298 supxrunb2 13299 difelfzle 13614 addmodlteq 13911 seqcl2 13986 facdiv 14247 facwordi 14249 faclbnd 14250 pfxccat3 14684 dvdsabseq 16256 divgcdcoprm0 16602 2mulprm 16630 exprmfct 16641 prmfac1 16658 pockthg 16839 cply1mul 21818 mdetralt 22110 cmpsub 22904 fbfinnfr 23345 alexsubALTlem2 23552 alexsubALTlem3 23553 ovolicc2lem3 25036 fta1g 25685 fta1 25821 mulcxp 26193 cxpcn3lem 26255 gausslemma2dlem4 26872 colinearalg 28168 upgrwlkdvdelem 28993 umgr2wlk 29203 clwwlknwwlksn 29291 clwwlknonex2lem2 29361 dmdbr5ati 31675 cvmlift3lem4 34313 dfon2lem9 34763 fscgr 35052 colinbtwnle 35090 broutsideof2 35094 gg-dvfsumlem2 35183 a1i14 35185 a1i24 35186 ordcmp 35332 bj-peircestab 35429 wl-aleq 36404 itg2addnc 36542 filbcmb 36608 mpobi123f 37030 mptbi12f 37034 ac6s6 37040 ltrnid 39006 cdleme25dN 39227 nn0rppwr 41224 ntrneiiso 42842 ee323 43269 vd13 43362 vd23 43363 ee03 43502 ee23an 43518 ee32 43520 ee32an 43522 ee123 43524 iccpartgt 46095 stgoldbwt 46444 tgoldbach 46485 nzerooringczr 46970 |
Copyright terms: Public domain | W3C validator |