![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version |
Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
Ref | Expression |
---|---|
a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1dd 51 merco2 1738 equvel 2455 propeqop 5506 funopsn 7142 xpexr 7905 omordi 8562 omwordi 8567 odi 8575 omass 8576 oen0 8582 oewordi 8587 oewordri 8588 nnmwordi 8631 omabs 8646 fisupg 9287 fiinfg 9490 cantnfle 9662 cantnflem1 9680 pr2neOLD 9996 gchina 10690 nqereu 10920 supsrlem 11102 1re 11210 lemul1a 12064 xlemul1a 13263 xrsupsslem 13282 xrinfmsslem 13283 xrub 13287 supxrunb1 13294 supxrunb2 13295 difelfzle 13610 addmodlteq 13907 seqcl2 13982 facdiv 14243 facwordi 14245 faclbnd 14246 pfxccat3 14680 dvdsabseq 16252 divgcdcoprm0 16598 2mulprm 16626 exprmfct 16637 prmfac1 16654 pockthg 16835 cply1mul 21809 mdetralt 22101 cmpsub 22895 fbfinnfr 23336 alexsubALTlem2 23543 alexsubALTlem3 23544 ovolicc2lem3 25027 fta1g 25676 fta1 25812 mulcxp 26184 cxpcn3lem 26244 gausslemma2dlem4 26861 colinearalg 28157 upgrwlkdvdelem 28982 umgr2wlk 29192 clwwlknwwlksn 29280 clwwlknonex2lem2 29350 dmdbr5ati 31662 cvmlift3lem4 34301 dfon2lem9 34751 fscgr 35040 colinbtwnle 35078 broutsideof2 35082 gg-dvfsumlem2 35171 a1i14 35173 a1i24 35174 ordcmp 35320 bj-peircestab 35417 wl-aleq 36392 itg2addnc 36530 filbcmb 36596 mpobi123f 37018 mptbi12f 37022 ac6s6 37028 ltrnid 38994 cdleme25dN 39215 nn0rppwr 41219 ntrneiiso 42827 ee323 43254 vd13 43347 vd23 43348 ee03 43487 ee23an 43503 ee32 43505 ee32an 43507 ee123 43509 iccpartgt 46081 stgoldbwt 46430 tgoldbach 46471 nzerooringczr 46923 |
Copyright terms: Public domain | W3C validator |