![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version |
Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
Ref | Expression |
---|---|
a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1dd 51 merco2 1734 equvel 2464 propeqop 5526 funopsn 7182 xpexr 7958 omordi 8622 omwordi 8627 odi 8635 omass 8636 oen0 8642 oewordi 8647 oewordri 8648 nnmwordi 8691 omabs 8707 fisupg 9352 fiinfg 9568 cantnfle 9740 cantnflem1 9758 pr2neOLD 10074 gchina 10768 nqereu 10998 supsrlem 11180 1re 11290 lemul1a 12148 xlemul1a 13350 xrsupsslem 13369 xrinfmsslem 13370 xrub 13374 supxrunb1 13381 supxrunb2 13382 difelfzle 13698 addmodlteq 13997 seqcl2 14071 facdiv 14336 facwordi 14338 faclbnd 14339 pfxccat3 14782 dvdsabseq 16361 nn0rppwr 16608 divgcdcoprm0 16712 2mulprm 16740 exprmfct 16751 prmfac1 16767 pockthg 16953 nzerooringczr 21514 cply1mul 22321 mdetralt 22635 cmpsub 23429 fbfinnfr 23870 alexsubALTlem2 24077 alexsubALTlem3 24078 ovolicc2lem3 25573 dvfsumlem2 26087 fta1g 26229 fta1 26368 taylply2 26427 mulcxp 26745 cxpcn3lem 26808 gausslemma2dlem4 27431 colinearalg 28943 upgrwlkdvdelem 29772 umgr2wlk 29982 clwwlknwwlksn 30070 clwwlknonex2lem2 30140 dmdbr5ati 32454 cvmlift3lem4 35290 dfon2lem9 35755 fscgr 36044 colinbtwnle 36082 broutsideof2 36086 a1i14 36266 a1i24 36267 ordcmp 36413 bj-peircestab 36519 wl-aleq 37489 itg2addnc 37634 filbcmb 37700 mpobi123f 38122 mptbi12f 38126 ac6s6 38132 ltrnid 40092 cdleme25dN 40313 ntrneiiso 44053 ee323 44479 vd13 44572 vd23 44573 ee03 44712 ee23an 44728 ee32 44730 ee32an 44732 ee123 44734 iccpartgt 47301 stgoldbwt 47650 tgoldbach 47691 |
Copyright terms: Public domain | W3C validator |