| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version | ||
| Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
| Ref | Expression |
|---|---|
| a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
| 3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2a1dd 51 merco2 1736 equvel 2454 propeqop 5450 funopsn 7082 xpexr 7851 resf1extb 7867 omordi 8484 omwordi 8489 odi 8497 omass 8498 oen0 8504 oewordi 8509 oewordri 8510 nnmwordi 8553 omabs 8569 fisupg 9177 fiinfg 9391 cantnfle 9567 cantnflem1 9585 gchina 10593 nqereu 10823 supsrlem 11005 1re 11115 lemul1a 11978 xlemul1a 13190 xrsupsslem 13209 xrinfmsslem 13210 xrub 13214 supxrunb1 13221 supxrunb2 13222 difelfzle 13544 addmodlteq 13853 seqcl2 13927 facdiv 14194 facwordi 14196 faclbnd 14197 pfxccat3 14640 dvdsabseq 16224 nn0rppwr 16472 divgcdcoprm0 16576 2mulprm 16604 exprmfct 16615 prmfac1 16631 pockthg 16818 nzerooringczr 21387 cply1mul 22181 mdetralt 22493 cmpsub 23285 fbfinnfr 23726 alexsubALTlem2 23933 alexsubALTlem3 23934 ovolicc2lem3 25418 dvfsumlem2 25931 fta1g 26073 fta1 26214 taylply2 26273 mulcxp 26592 cxpcn3lem 26655 gausslemma2dlem4 27278 colinearalg 28855 upgrwlkdvdelem 29681 umgr2wlk 29894 clwwlknwwlksn 29982 clwwlknonex2lem2 30052 dmdbr5ati 32366 cvmlift3lem4 35299 antnestlaw2 35669 dfon2lem9 35769 fscgr 36058 colinbtwnle 36096 broutsideof2 36100 a1i14 36278 a1i24 36279 ordcmp 36425 bj-peircestab 36531 wl-aleq 37513 itg2addnc 37658 filbcmb 37724 mpobi123f 38146 mptbi12f 38150 ac6s6 38156 ltrnid 40118 cdleme25dN 40339 ntrneiiso 44068 ee323 44486 vd13 44579 vd23 44580 ee03 44718 ee23an 44734 ee32 44736 ee32an 44738 ee123 44740 iccpartgt 47415 stgoldbwt 47764 tgoldbach 47805 gpgedg2iv 48055 |
| Copyright terms: Public domain | W3C validator |