![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a1dd | Structured version Visualization version GIF version |
Description: Double deduction introducing an antecedent. Deduction associated with a1d 25. Double deduction associated with ax-1 6 and a1i 11. (Contributed by NM, 17-Dec-2004.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
Ref | Expression |
---|---|
a1dd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a1dd | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1dd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-1 6 | . 2 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2a1dd 51 merco2 1736 equvel 2453 propeqop 5508 funopsn 7149 xpexr 7913 omordi 8570 omwordi 8575 odi 8583 omass 8584 oen0 8590 oewordi 8595 oewordri 8596 nnmwordi 8639 omabs 8654 fisupg 9295 fiinfg 9498 cantnfle 9670 cantnflem1 9688 pr2neOLD 10004 gchina 10698 nqereu 10928 supsrlem 11110 1re 11220 lemul1a 12074 xlemul1a 13273 xrsupsslem 13292 xrinfmsslem 13293 xrub 13297 supxrunb1 13304 supxrunb2 13305 difelfzle 13620 addmodlteq 13917 seqcl2 13992 facdiv 14253 facwordi 14255 faclbnd 14256 pfxccat3 14690 dvdsabseq 16262 divgcdcoprm0 16608 2mulprm 16636 exprmfct 16647 prmfac1 16664 pockthg 16845 cply1mul 22040 mdetralt 22332 cmpsub 23126 fbfinnfr 23567 alexsubALTlem2 23774 alexsubALTlem3 23775 ovolicc2lem3 25270 fta1g 25919 fta1 26055 mulcxp 26427 cxpcn3lem 26489 gausslemma2dlem4 27106 colinearalg 28433 upgrwlkdvdelem 29258 umgr2wlk 29468 clwwlknwwlksn 29556 clwwlknonex2lem2 29626 dmdbr5ati 31940 cvmlift3lem4 34609 dfon2lem9 35065 fscgr 35354 colinbtwnle 35392 broutsideof2 35396 gg-dvfsumlem2 35471 a1i14 35490 a1i24 35491 ordcmp 35637 bj-peircestab 35734 wl-aleq 36709 itg2addnc 36847 filbcmb 36913 mpobi123f 37335 mptbi12f 37339 ac6s6 37345 ltrnid 39311 cdleme25dN 39532 nn0rppwr 41528 ntrneiiso 43146 ee323 43573 vd13 43666 vd23 43667 ee03 43806 ee23an 43822 ee32 43824 ee32an 43826 ee123 43828 iccpartgt 46395 stgoldbwt 46744 tgoldbach 46785 nzerooringczr 47060 |
Copyright terms: Public domain | W3C validator |