Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-idALT Structured version   Visualization version   GIF version

Theorem adh-minimp-idALT 44378
Description: Derivation of id 22 (reflexivity of implication, PM *2.08 WhiteheadRussell p. 101) from adh-minimp-ax1 44373, adh-minimp-ax2 44377, and ax-mp 5. It uses the derivation written DD211 in D-notation. (See head comment for an explanation.) Polish prefix notation: Cpp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-idALT (𝜑𝜑)

Proof of Theorem adh-minimp-idALT
StepHypRef Expression
1 adh-minimp-ax1 44373 . 2 (𝜑 → (𝜓𝜑))
2 adh-minimp-ax1 44373 . . 3 (𝜑 → ((𝜓𝜑) → 𝜑))
3 adh-minimp-ax2 44377 . . 3 ((𝜑 → ((𝜓𝜑) → 𝜑)) → ((𝜑 → (𝜓𝜑)) → (𝜑𝜑)))
42, 3ax-mp 5 . 2 ((𝜑 → (𝜓𝜑)) → (𝜑𝜑))
51, 4ax-mp 5 1 (𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator