| Mathbox for Adhemar |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > adh-minimp-ax2 | Structured version Visualization version GIF version | ||
| Description: Derivation of ax-2 7 from adh-minimp 46959 and ax-mp 5. Polish prefix notation: CCpCqrCCpqCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adh-minimp-ax2 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adh-minimp-ax2-lem4 46967 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) | |
| 2 | adh-minimp-ax2c 46966 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | |
| 3 | adh-minimp-ax2-lem4 46967 | . . 3 ⊢ (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → (((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: adh-minimp-idALT 46969 adh-minimp-pm2.43 46970 |
| Copyright terms: Public domain | W3C validator |