Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-ax2 Structured version   Visualization version   GIF version

Theorem adh-minimp-ax2 44377
Description: Derivation of ax-2 7 from adh-minimp 44368 and ax-mp 5. Polish prefix notation: CCpCqrCCpqCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-ax2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem adh-minimp-ax2
StepHypRef Expression
1 adh-minimp-ax2-lem4 44376 . 2 ((𝜑 → (𝜓𝜒)) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒))))
2 adh-minimp-ax2c 44375 . . 3 ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))
3 adh-minimp-ax2-lem4 44376 . . 3 (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → (((𝜑 → (𝜓𝜒)) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒)))) → ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))))
42, 3ax-mp 5 . 2 (((𝜑 → (𝜓𝜒)) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒)))) → ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒))))
51, 4ax-mp 5 1 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minimp-idALT  44378  adh-minimp-pm2.43  44379
  Copyright terms: Public domain W3C validator