Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-pm2.43 Structured version   Visualization version   GIF version

Theorem adh-minimp-pm2.43 44379
Description: Derivation of pm2.43 56 WhiteheadRussell p. 106 (also called "hilbert" or "W") from adh-minimp-ax1 44373, adh-minimp-ax2 44377, and ax-mp 5. It uses the derivation written DD22D21 in D-notation. (See head comment for an explanation.) Polish prefix notation: CCpCpqCpq . (Contributed by BJ, 31-May-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-pm2.43 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem adh-minimp-pm2.43
StepHypRef Expression
1 adh-minimp-ax1 44373 . . 3 (𝜑 → ((𝜑𝜓) → 𝜑))
2 adh-minimp-ax2 44377 . . 3 ((𝜑 → ((𝜑𝜓) → 𝜑)) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜑)))
31, 2ax-mp 5 . 2 ((𝜑 → (𝜑𝜓)) → (𝜑𝜑))
4 adh-minimp-ax2 44377 . . 3 ((𝜑 → (𝜑𝜓)) → ((𝜑𝜑) → (𝜑𝜓)))
5 adh-minimp-ax2 44377 . . 3 (((𝜑 → (𝜑𝜓)) → ((𝜑𝜑) → (𝜑𝜓))) → (((𝜑 → (𝜑𝜓)) → (𝜑𝜑)) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))))
64, 5ax-mp 5 . 2 (((𝜑 → (𝜑𝜓)) → (𝜑𝜑)) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓)))
73, 6ax-mp 5 1 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator