Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-ax1 Structured version   Visualization version   GIF version

Theorem adh-minimp-ax1 44373
Description: Derivation of ax-1 6 from adh-minimp 44368 and ax-mp 5. Polish prefix notation: CpCqp . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-ax1 (𝜑 → (𝜓𝜑))

Proof of Theorem adh-minimp-ax1
StepHypRef Expression
1 adh-minimp-sylsimp 44372 . 2 (((𝜑𝜓) → 𝜑) → (𝜓𝜑))
2 adh-minimp-sylsimp 44372 . 2 ((((𝜑𝜓) → 𝜑) → (𝜓𝜑)) → (𝜑 → (𝜓𝜑)))
31, 2ax-mp 5 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minimp-idALT  44378  adh-minimp-pm2.43  44379
  Copyright terms: Public domain W3C validator