Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiffbtbat Structured version   Visualization version   GIF version

Theorem aiffbtbat 44290
Description: Given a is equivalent to b, T. is equivalent to b. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)
Hypotheses
Ref Expression
aiffbtbat.1 (𝜑𝜓)
aiffbtbat.2 (⊤ ↔ 𝜓)
Assertion
Ref Expression
aiffbtbat (𝜑 ↔ ⊤)

Proof of Theorem aiffbtbat
StepHypRef Expression
1 aiffbtbat.1 . 2 (𝜑𝜓)
2 aiffbtbat.2 . 2 (⊤ ↔ 𝜓)
31, 2bitr4i 277 1 (𝜑 ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wtru 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator