Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > astbstanbst | Structured version Visualization version GIF version |
Description: Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
Ref | Expression |
---|---|
astbstanbst.1 | ⊢ (𝜑 ↔ ⊤) |
astbstanbst.2 | ⊢ (𝜓 ↔ ⊤) |
Ref | Expression |
---|---|
astbstanbst | ⊢ ((𝜑 ∧ 𝜓) ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | astbstanbst.1 | . . . 4 ⊢ (𝜑 ↔ ⊤) | |
2 | 1 | aistia 44392 | . . 3 ⊢ 𝜑 |
3 | astbstanbst.2 | . . . 4 ⊢ (𝜓 ↔ ⊤) | |
4 | 3 | aistia 44392 | . . 3 ⊢ 𝜓 |
5 | 2, 4 | pm3.2i 471 | . 2 ⊢ (𝜑 ∧ 𝜓) |
6 | 5 | bitru 1548 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ ⊤) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 |
This theorem is referenced by: dandysum2p2e4 44493 |
Copyright terms: Public domain | W3C validator |