| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > astbstanbst | Structured version Visualization version GIF version | ||
| Description: Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
| Ref | Expression |
|---|---|
| astbstanbst.1 | ⊢ (𝜑 ↔ ⊤) |
| astbstanbst.2 | ⊢ (𝜓 ↔ ⊤) |
| Ref | Expression |
|---|---|
| astbstanbst | ⊢ ((𝜑 ∧ 𝜓) ↔ ⊤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | astbstanbst.1 | . . . 4 ⊢ (𝜑 ↔ ⊤) | |
| 2 | 1 | aistia 46855 | . . 3 ⊢ 𝜑 |
| 3 | astbstanbst.2 | . . . 4 ⊢ (𝜓 ↔ ⊤) | |
| 4 | 3 | aistia 46855 | . . 3 ⊢ 𝜓 |
| 5 | 2, 4 | pm3.2i 470 | . 2 ⊢ (𝜑 ∧ 𝜓) |
| 6 | 5 | bitru 1548 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ ⊤) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 |
| This theorem is referenced by: dandysum2p2e4 46956 |
| Copyright terms: Public domain | W3C validator |