|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aibnbaif | Structured version Visualization version GIF version | ||
| Description: Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| aibnbaif.1 | ⊢ (𝜑 → 𝜓) | 
| aibnbaif.2 | ⊢ ¬ 𝜓 | 
| Ref | Expression | 
|---|---|
| aibnbaif | ⊢ (𝜑 ↔ ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | aibnbaif.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | aibnbaif.2 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 1, 2 | aibnbna 46918 | . 2 ⊢ ¬ 𝜑 | 
| 4 | 3 | bifal 1556 | 1 ⊢ (𝜑 ↔ ⊥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ⊥wfal 1552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 | 
| This theorem is referenced by: conimpf 46929 conimpfalt 46930 dandysum2p2e4 47010 | 
| Copyright terms: Public domain | W3C validator |