Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alsi2d Structured version   Visualization version   GIF version

Theorem alsi2d 46740
Description: Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
Hypothesis
Ref Expression
alsi2d.1 (𝜑 → ∀!𝑥(𝜓𝜒))
Assertion
Ref Expression
alsi2d (𝜑 → ∃𝑥𝜓)

Proof of Theorem alsi2d
StepHypRef Expression
1 alsi2d.1 . . 3 (𝜑 → ∀!𝑥(𝜓𝜒))
2 df-alsi 46736 . . 3 (∀!𝑥(𝜓𝜒) ↔ (∀𝑥(𝜓𝜒) ∧ ∃𝑥𝜓))
31, 2sylib 217 . 2 (𝜑 → (∀𝑥(𝜓𝜒) ∧ ∃𝑥𝜓))
43simprd 497 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wal 1537  wex 1779  ∀!walsi 46734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-alsi 46736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator