Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > alsc1d | Structured version Visualization version GIF version |
Description: Deduction rule: Given "all some" applied to a class, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
Ref | Expression |
---|---|
alsc1d.1 | ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) |
Ref | Expression |
---|---|
alsc1d | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alsc1d.1 | . . 3 ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) | |
2 | df-alsc 46493 | . . 3 ⊢ (∀!𝑥 ∈ 𝐴𝜓 ↔ (∀𝑥 ∈ 𝐴 𝜓 ∧ ∃𝑥 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ∧ ∃𝑥 𝑥 ∈ 𝐴)) |
4 | 3 | simpld 495 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ∀!walsc 46491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-alsc 46493 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |