Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alsc1d Structured version   Visualization version   GIF version

Theorem alsc1d 46383
Description: Deduction rule: Given "all some" applied to a class, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
Hypothesis
Ref Expression
alsc1d.1 (𝜑 → ∀!𝑥𝐴𝜓)
Assertion
Ref Expression
alsc1d (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem alsc1d
StepHypRef Expression
1 alsc1d.1 . . 3 (𝜑 → ∀!𝑥𝐴𝜓)
2 df-alsc 46379 . . 3 (∀!𝑥𝐴𝜓 ↔ (∀𝑥𝐴 𝜓 ∧ ∃𝑥 𝑥𝐴))
31, 2sylib 217 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ∧ ∃𝑥 𝑥𝐴))
43simpld 494 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  wral 3063  ∀!walsc 46377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-alsc 46379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator