![]() |
Metamath
Proof Explorer Theorem List (p. 483 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ldepsprlem 48201 | Lemma for ldepspr 48202. (Contributed by AV, 16-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = 𝑍)) | ||
Theorem | ldepspr 48202 | If a vector is a scalar multiple of another vector, the (unordered pair containing the) two vectors are linearly dependent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀)) | ||
Theorem | lincresunit3lem3 48203 | Lemma 3 for lincresunit3 48210. (Contributed by AV, 18-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐴 ∈ 𝑈) → (((𝑁‘𝐴) · 𝑋) = ((𝑁‘𝐴) · 𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | lincresunitlem1 48204 | Lemma 1 for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) | ||
Theorem | lincresunitlem2 48205 | Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) | ||
Theorem | lincresunit1 48206* | Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) | ||
Theorem | lincresunit2 48207* | Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 finSupp 0 ) | ||
Theorem | lincresunit3lem1 48208* | Lemma 1 for lincresunit3 48210. (Contributed by AV, 17-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠 ‘𝑀)((𝐺‘𝑧)( ·𝑠 ‘𝑀)𝑧)) = ((𝐹‘𝑧)( ·𝑠 ‘𝑀)𝑧)) | ||
Theorem | lincresunit3lem2 48209* | Lemma 2 for lincresunit3 48210. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠 ‘𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠 ‘𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))) | ||
Theorem | lincresunit3 48210* | Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | ||
Theorem | lincreslvec3 48211* | Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | ||
Theorem | islindeps2 48212* | Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀)) | ||
Theorem | islininds2 48213* | Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))) | ||
Theorem | isldepslvec2 48214* | Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 48212 holds, so that both definitions are equivalent (see theorem 1.6 in [Roman] p. 46 and the note in [Roman] p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀)) | ||
Theorem | lindssnlvec 48215 | A singleton not containing the zero element of a vector space is always linearly independent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 28-Apr-2019.) |
⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → {𝑆} linIndS 𝑀) | ||
Theorem | lmod1lem1 48216* | Lemma 1 for lmod1 48221. (Contributed by AV, 28-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠 ‘𝑀)𝐼) ∈ {𝐼}) | ||
Theorem | lmod1lem2 48217* | Lemma 2 for lmod1 48221. (Contributed by AV, 28-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠 ‘𝑀)(𝐼(+g‘𝑀)𝐼)) = ((𝑟( ·𝑠 ‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
Theorem | lmod1lem3 48218* | Lemma 3 for lmod1 48221. (Contributed by AV, 29-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠 ‘𝑀)𝐼) = ((𝑞( ·𝑠 ‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
Theorem | lmod1lem4 48219* | Lemma 4 for lmod1 48221. (Contributed by AV, 29-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠 ‘𝑀)𝐼) = (𝑞( ·𝑠 ‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
Theorem | lmod1lem5 48220* | Lemma 5 for lmod1 48221. (Contributed by AV, 28-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠 ‘𝑀)𝐼) = 𝐼) | ||
Theorem | lmod1 48221* | The (smallest) structure representing a zero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑀 ∈ LMod) | ||
Theorem | lmod1zr 48222 | The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.) |
⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} & ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∈ LMod) | ||
Theorem | lmod1zrnlvec 48223 | There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.) |
⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} & ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∉ LVec) | ||
Theorem | lmodn0 48224 | Left modules exist. (Contributed by AV, 29-Apr-2019.) |
⊢ LMod ≠ ∅ | ||
Theorem | zlmodzxzequa 48225 | Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ ∙ = ( ·𝑠 ‘𝑍) & ⊢ − = (-g‘𝑍) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 | ||
Theorem | zlmodzxznm 48226 | Example of a linearly dependent set whose elements are not linear combinations of the others, see note in [Roman] p. 112). (Contributed by AV, 23-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ ∙ = ( ·𝑠 ‘𝑍) & ⊢ − = (-g‘𝑍) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ ∀𝑖 ∈ ℤ ((𝑖 ∙ 𝐴) ≠ 𝐵 ∧ (𝑖 ∙ 𝐵) ≠ 𝐴) | ||
Theorem | zlmodzxzldeplem 48227 | A and B are not equal. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ 𝐴 ≠ 𝐵 | ||
Theorem | zlmodzxzequap 48228 | Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set), written as a sum. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ + = (+g‘𝑍) & ⊢ ∙ = ( ·𝑠 ‘𝑍) ⇒ ⊢ ((2 ∙ 𝐴) + (-3 ∙ 𝐵)) = 0 | ||
Theorem | zlmodzxzldeplem1 48229 | Lemma 1 for zlmodzxzldep 48233. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) | ||
Theorem | zlmodzxzldeplem2 48230 | Lemma 2 for zlmodzxzldep 48233. (Contributed by AV, 24-May-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ 𝐹 finSupp 0 | ||
Theorem | zlmodzxzldeplem3 48231 | Lemma 3 for zlmodzxzldep 48233. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g‘𝑍) | ||
Theorem | zlmodzxzldeplem4 48232* | Lemma 4 for zlmodzxzldep 48233. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 | ||
Theorem | zlmodzxzldep 48233 | { A , B } is a linearly dependent set within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ {𝐴, 𝐵} linDepS 𝑍 | ||
Theorem | ldepsnlinclem1 48234 | Lemma 1 for ldepsnlinc 48237. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) | ||
Theorem | ldepsnlinclem2 48235 | Lemma 2 for ldepsnlinc 48237. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) | ||
Theorem | lvecpsslmod 48236 | The class of all (left) vector spaces is a proper subclass of the class of all (left) modules. Although it is obvious (and proven by lveclmod 21128) that every left vector space is a left module, there is (at least) one left module which is no left vector space, for example the zero module over the zero ring, see lmod1zrnlvec 48223. (Contributed by AV, 29-Apr-2019.) |
⊢ LVec ⊊ LMod | ||
Theorem | ldepsnlinc 48237* | The reverse implication of islindeps2 48212 does not hold for arbitrary (left) modules, see note in [Roman] p. 112: "... if a nontrivial linear combination of the elements ... in an R-module M is 0, ... where not all of the coefficients are 0, then we cannot conclude ... that one of the elements ... is a linear combination of the others." This means that there is at least one left module having a linearly dependent subset in which there is at least one element which is not a linear combination of the other elements of this subset. Such a left module can be constructed by using zlmodzxzequa 48225 and zlmodzxznm 48226. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣 ∈ 𝑠 ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) | ||
Theorem | ldepslinc 48238* | For (left) vector spaces, isldepslvec2 48214 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc 48237 indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ (∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣 ∈ 𝑠 ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣 ∈ 𝑠 ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))) | ||
Theorem | suppdm 48239 | If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.) |
⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) | ||
Theorem | eluz2cnn0n1 48240 | An integer greater than 1 is a complex number not equal to 0 or 1. (Contributed by AV, 23-May-2020.) |
⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ (ℂ ∖ {0, 1})) | ||
Theorem | divge1b 48241 | The ratio of a real number to a positive real number is greater than or equal to 1 iff the divisor (the positive real number) is less than or equal to the dividend (the real number). (Contributed by AV, 26-May-2020.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ 1 ≤ (𝐵 / 𝐴))) | ||
Theorem | divgt1b 48242 | The ratio of a real number to a positive real number is greater than 1 iff the divisor (the positive real number) is less than the dividend (the real number). (Contributed by AV, 30-May-2020.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 1 < (𝐵 / 𝐴))) | ||
Theorem | ltsubaddb 48243 | Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐶) < (𝐵 − 𝐷) ↔ (𝐴 + 𝐷) < (𝐵 + 𝐶))) | ||
Theorem | ltsubsubb 48244 | Equivalence for the "less than" relation between differences. (Contributed by AV, 6-Jun-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐶) < (𝐵 − 𝐷) ↔ (𝐴 − 𝐵) < (𝐶 − 𝐷))) | ||
Theorem | ltsubadd2b 48245 | Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐷 − 𝐶) < (𝐵 − 𝐴) ↔ (𝐴 + 𝐷) < (𝐵 + 𝐶))) | ||
Theorem | divsub1dir 48246 | Distribution of division over subtraction by 1. (Contributed by AV, 6-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) − 1) = ((𝐴 − 𝐵) / 𝐵)) | ||
Theorem | expnegico01 48247 | An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) | ||
Theorem | elfzolborelfzop1 48248 | An element of a half-open integer interval is either equal to the left bound of the interval or an element of a half-open integer interval with a lower bound increased by 1. (Contributed by AV, 2-Jun-2020.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)..^𝑁))) | ||
Theorem | pw2m1lepw2m1 48249 | 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.) |
⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) | ||
Theorem | zgtp1leeq 48250 | If an integer is between another integer and its predecessor, the integer is equal to the other integer. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 − 1) < 𝐼 ∧ 𝐼 ≤ 𝐴) → 𝐼 = 𝐴)) | ||
Theorem | flsubz 48251 | An integer can be moved in and out of the floor of a difference. (Contributed by AV, 29-May-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 − 𝑁)) = ((⌊‘𝐴) − 𝑁)) | ||
Theorem | fldivmod 48252 | Expressing the floor of a division by the modulo operator. (Contributed by AV, 6-Jun-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) | ||
Theorem | mod0mul 48253* | If an integer is 0 modulo a positive integer, this integer must be the product of another integer and the modulus. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁))) | ||
Theorem | modn0mul 48254* | If an integer is not 0 modulo a positive integer, this integer must be the sum of the product of another integer and the modulus and a positive integer less than the modulus. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))) | ||
Theorem | m1modmmod 48255 | An integer decreased by 1 modulo a positive integer minus the integer modulo the same modulus is either -1 or the modulus minus 1. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1)) | ||
Theorem | difmodm1lt 48256 | The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) | ||
Theorem | nn0onn0ex 48257* | For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) | ||
Theorem | nn0enn0ex 48258* | For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚)) | ||
Theorem | nnennex 48259* | For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚)) | ||
Theorem | nneop 48260 | A positive integer is even or odd. (Contributed by AV, 30-May-2020.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
Theorem | nneom 48261 | A positive integer is even or odd. (Contributed by AV, 30-May-2020.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
Theorem | nn0eo 48262 | A nonnegative integer is even or odd. (Contributed by AV, 27-May-2020.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0)) | ||
Theorem | nnpw2even 48263 | 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ((2↑𝑁) / 2) ∈ ℕ) | ||
Theorem | zefldiv2 48264 | The floor of an even integer divided by 2 is equal to the integer divided by 2. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = (𝑁 / 2)) | ||
Theorem | zofldiv2 48265 | The floor of an odd integer divided by 2 is equal to the integer first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | ||
Theorem | nn0ofldiv2 48266 | The floor of an odd nonnegative integer divided by 2 is equal to the integer first decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.) (Proof shortened by AV, 7-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | ||
Theorem | flnn0div2ge 48267 | The floor of a positive integer divided by 2 is greater than or equal to the integer decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))) | ||
Theorem | flnn0ohalf 48268 | The floor of the half of an odd positive integer is equal to the floor of the half of the integer decreased by 1. (Contributed by AV, 5-Jun-2012.) |
⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / 2)) = (⌊‘((𝑁 − 1) / 2))) | ||
Theorem | logcxp0 48269 | Logarithm of a complex power. Generalization of logcxp 26729. (Contributed by AV, 22-May-2020.) |
⊢ ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℂ ∧ (𝐵 · (log‘𝐴)) ∈ ran log) → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) | ||
Theorem | regt1loggt0 48270 | The natural logarithm for a real number greater than 1 is greater than 0. (Contributed by AV, 25-May-2020.) |
⊢ (𝐵 ∈ (1(,)+∞) → 0 < (log‘𝐵)) | ||
Syntax | cfdiv 48271 | Extend class notation with the division operator of two functions. |
class /f | ||
Definition | df-fdiv 48272* | Define the division of two functions into the complex numbers. (Contributed by AV, 15-May-2020.) |
⊢ /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0))) | ||
Theorem | fdivval 48273 | The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) | ||
Theorem | fdivmpt 48274* | The quotient of two functions into the complex numbers as mapping. (Contributed by AV, 16-May-2020.) |
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | ||
Theorem | fdivmptf 48275 | The quotient of two functions into the complex numbers is a function into the complex numbers. (Contributed by AV, 16-May-2020.) |
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ) | ||
Theorem | refdivmptf 48276 | The quotient of two functions into the real numbers is a function into the real numbers. (Contributed by AV, 16-May-2020.) |
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ) | ||
Theorem | fdivpm 48277 | The quotient of two functions into the complex numbers is a partial function. (Contributed by AV, 16-May-2020.) |
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) ∈ (ℂ ↑pm 𝐴)) | ||
Theorem | refdivpm 48278 | The quotient of two functions into the real numbers is a partial function. (Contributed by AV, 16-May-2020.) |
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) ∈ (ℝ ↑pm 𝐴)) | ||
Theorem | fdivmptfv 48279 | The function value of a quotient of two functions into the complex numbers. (Contributed by AV, 19-May-2020.) |
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹‘𝑋) / (𝐺‘𝑋))) | ||
Theorem | refdivmptfv 48280 | The function value of a quotient of two functions into the real numbers. (Contributed by AV, 19-May-2020.) |
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹‘𝑋) / (𝐺‘𝑋))) | ||
Syntax | cbigo 48281 | Extend class notation with the class of the "big-O" function. |
class Ο | ||
Definition | df-bigo 48282* | Define the function "big-O", mapping a real function g to the set of real functions "of order g(x)". Definition in section 1.1 of [AhoHopUll] p. 2. This is a generalization of "big-O of one", see df-o1 15536 and df-lo1 15537. As explained in the comment of df-o1 , any big-O can be represented in terms of 𝑂(1) and division, see elbigolo1 48291. (Contributed by AV, 15-May-2020.) |
⊢ Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))}) | ||
Theorem | bigoval 48283* | Set of functions of order G(x). (Contributed by AV, 15-May-2020.) |
⊢ (𝐺 ∈ (ℝ ↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))}) | ||
Theorem | elbigofrcl 48284 | Reverse closure of the "big-O" function. (Contributed by AV, 16-May-2020.) |
⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ)) | ||
Theorem | elbigo 48285* | Properties of a function of order G(x). (Contributed by AV, 16-May-2020.) |
⊢ (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | ||
Theorem | elbigo2 48286* | Properties of a function of order G(x) under certain assumptions. (Contributed by AV, 17-May-2020.) |
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) | ||
Theorem | elbigo2r 48287* | Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.) |
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → 𝐹 ∈ (Ο‘𝐺)) | ||
Theorem | elbigof 48288 | A function of order G(x) is a function. (Contributed by AV, 18-May-2020.) |
⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐹:dom 𝐹⟶ℝ) | ||
Theorem | elbigodm 48289 | The domain of a function of order G(x) is a subset of the reals. (Contributed by AV, 18-May-2020.) |
⊢ (𝐹 ∈ (Ο‘𝐺) → dom 𝐹 ⊆ ℝ) | ||
Theorem | elbigoimp 48290* | The defining property of a function of order G(x). (Contributed by AV, 18-May-2020.) |
⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | ||
Theorem | elbigolo1 48291 | A function (into the positive reals) is of order G(x) iff the quotient of the function and G(x) (also a function into the positive reals) is an eventually upper bounded function. (Contributed by AV, 20-May-2020.) (Proof shortened by II, 16-Feb-2023.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+ ∧ 𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1))) | ||
Theorem | rege1logbrege0 48292 | The general logarithm, with a real base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020.) |
⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋)) | ||
Theorem | rege1logbzge0 48293 | The general logarithm, with an integer base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋)) | ||
Theorem | fllogbd 48294 | A real number is between the base of a logarithm to the power of the floor of the logarithm of the number and the base of the logarithm to the power of the floor of the logarithm of the number plus one. (Contributed by AV, 23-May-2020.) |
⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) & ⊢ 𝐸 = (⌊‘(𝐵 logb 𝑋)) ⇒ ⊢ (𝜑 → ((𝐵↑𝐸) ≤ 𝑋 ∧ 𝑋 < (𝐵↑(𝐸 + 1)))) | ||
Theorem | relogbmulbexp 48295 | The logarithm of the product of a positive real number and the base to the power of a real number is the logarithm of the positive real number plus the real number. (Contributed by AV, 29-May-2020.) |
⊢ ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐵↑𝑐𝐶))) = ((𝐵 logb 𝐴) + 𝐶)) | ||
Theorem | relogbdivb 48296 | The logarithm of the quotient of a positive real number and the base is the logarithm of the number minus 1. (Contributed by AV, 29-May-2020.) |
⊢ ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb (𝐴 / 𝐵)) = ((𝐵 logb 𝐴) − 1)) | ||
Theorem | logbge0b 48297 | The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (0 ≤ (𝐵 logb 𝑋) ↔ 1 ≤ 𝑋)) | ||
Theorem | logblt1b 48298 | The logarithm of a number is less than 1 iff the number is less than the base of the logarithm. (Contributed by AV, 30-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → ((𝐵 logb 𝑋) < 1 ↔ 𝑋 < 𝐵)) | ||
If the binary logarithm is used more often, a separate symbol/definition could be provided for it, e.g., log2 = (𝑥 ∈ (ℂ ∖ {0}) ↦ (2 logb 𝑋)). Then we can write "( log2 ` x )" (analogous to (log𝑥) for the natural logarithm) instead of (2 logb 𝑥). | ||
Theorem | fldivexpfllog2 48299 | The floor of a positive real number divided by 2 to the power of the floor of the logarithm to base 2 of the number is 1. (Contributed by AV, 26-May-2020.) |
⊢ (𝑋 ∈ ℝ+ → (⌊‘(𝑋 / (2↑(⌊‘(2 logb 𝑋))))) = 1) | ||
Theorem | nnlog2ge0lt1 48300 | A positive integer is 1 iff its binary logarithm is between 0 and 1. (Contributed by AV, 30-May-2020.) |
⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |