| Metamath
Proof Explorer Theorem List (p. 483 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 1odd 48201* | 1 is an odd integer. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 1 ∈ 𝑂 | ||
| Theorem | 2nodd 48202* | 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 2 ∉ 𝑂 | ||
| Theorem | oddibas 48203* | Lemma 1 for oddinmgm 48205: The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ 𝑂 = (Base‘𝑀) | ||
| Theorem | oddiadd 48204* | Lemma 2 for oddinmgm 48205: The group addition operation of M is the addition of complex numbers. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ + = (+g‘𝑀) | ||
| Theorem | oddinmgm 48205* | The structure of all odd integers together with the addition of complex numbers is not a magma. Remark: the structure of the complementary subset of the set of integers, the even integers, is a magma, actually an abelian group, see 2zrngaabl 48280, and even a non-unital ring, see 2zrng 48271. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ 𝑀 ∉ Mgm | ||
| Theorem | nnsgrpmgm 48206 | The structure of positive integers together with the addition of complex numbers is a magma. (Contributed by AV, 4-Feb-2020.) |
| ⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∈ Mgm | ||
| Theorem | nnsgrp 48207 | The structure of positive integers together with the addition of complex numbers is a semigroup. (Contributed by AV, 4-Feb-2020.) |
| ⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∈ Smgrp | ||
| Theorem | nnsgrpnmnd 48208 | The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.) |
| ⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∉ Mnd | ||
| Theorem | nn0mnd 48209 | The set of nonnegative integers under (complex) addition is a monoid. Example in [Lang] p. 6. Remark: 𝑀 could have also been written as (ℂfld ↾s ℕ0). (Contributed by AV, 27-Dec-2023.) |
| ⊢ 𝑀 = {〈(Base‘ndx), ℕ0〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝑀 ∈ Mnd | ||
| Theorem | gsumsplit2f 48210* | Split a group sum into two parts. (Contributed by AV, 4-Sep-2019.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) | ||
| Theorem | gsumdifsndf 48211* | Extract a summand from a finitely supported group sum. (Contributed by AV, 4-Sep-2019.) |
| ⊢ Ⅎ𝑘𝑌 & ⊢ Ⅎ𝑘𝜑 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) | ||
| Theorem | gsumfsupp 48212 | A group sum of a family can be restricted to the support of that family without changing its value, provided that that support is finite. This corresponds to the definition of an (infinite) product in [Lang] p. 5, last two formulas. (Contributed by AV, 27-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐼 = (𝐹 supp 0 ) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐼)) = (𝐺 Σg 𝐹)) | ||
With df-mpo 7351, binary operations are defined by a rule, and with df-ov 7349, the value of a binary operation applied to two operands can be expressed. In both cases, the two operands can belong to different sets, and the result can be an element of a third set. However, according to Wikipedia "Binary operation", see https://en.wikipedia.org/wiki/Binary_operation 7349 (19-Jan-2020), "... a binary operation on a set 𝑆 is a mapping of the elements of the Cartesian product 𝑆 × 𝑆 to S: 𝑓:𝑆 × 𝑆⟶𝑆. Because the result of performing the operation on a pair of elements of S is again an element of S, the operation is called a closed binary operation on S (or sometimes expressed as having the property of closure).". To distinguish this more restrictive definition (in Wikipedia and most of the literature) from the general case, we call binary operations mapping the elements of the Cartesian product 𝑆 × 𝑆 internal binary operations, see df-intop 48229. If, in addition, the result is also contained in the set 𝑆, the operation is called closed internal binary operation, see df-clintop 48230. Therefore, a "binary operation on a set 𝑆 " according to Wikipedia is a "closed internal binary operation" in our terminology. If the sets are different, the operation is explicitly called external binary operation (see Wikipedia https://en.wikipedia.org/wiki/Binary_operation#External_binary_operations 48230 ). Taking a step back, we define "laws" applicable for "binary operations" (which even need not to be functions), according to the definition in [Hall] p. 1 and [BourbakiAlg1] p. 1, p. 4 and p. 7. These laws are used, on the one hand, to specialize internal binary operations (see df-clintop 48230 and df-assintop 48231), and on the other hand to define the common algebraic structures like magmas, groups, rings, etc. Internal binary operations, which obey these laws, are defined afterwards. Notice that in [BourbakiAlg1] p. 1, p. 4 and p. 7, these operations are called "laws" by themselves. In the following, an alternate definition df-cllaw 48216 for an internal binary operation is provided, which does not require function-ness, but only closure. Therefore, this definition could be used as binary operation (Slot 2) defined for a magma as extensible structure, see mgmplusgiopALT 48224, or for an alternate definition df-mgm2 48249 for a magma as extensible structure. Similar results are obtained for an associative operation (defining semigroups). | ||
In this subsection, the "laws" applicable for "binary operations" according to the definition in [Hall] p. 1 and [BourbakiAlg1] p. 1, p. 4 and p. 7 are defined. These laws are called "internal laws" in [BourbakiAlg1] p. xxi. | ||
| Syntax | ccllaw 48213 | Extend class notation for the closure law. |
| class clLaw | ||
| Syntax | casslaw 48214 | Extend class notation for the associative law. |
| class assLaw | ||
| Syntax | ccomlaw 48215 | Extend class notation for the commutative law. |
| class comLaw | ||
| Definition | df-cllaw 48216* | The closure law for binary operations, see definitions of laws A0. and M0. in section 1.1 of [Hall] p. 1, or definition 1 in [BourbakiAlg1] p. 1: the value of a binary operation applied to two operands of a given sets is an element of this set. By this definition, the closure law is expressed as binary relation: a binary operation is related to a set by clLaw if the closure law holds for this binary operation regarding this set. Note that the binary operation needs not to be a function. (Contributed by AV, 7-Jan-2020.) |
| ⊢ clLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} | ||
| Definition | df-comlaw 48217* | The commutative law for binary operations, see definitions of laws A2. and M2. in section 1.1 of [Hall] p. 1, or definition 8 in [BourbakiAlg1] p. 7: the value of a binary operation applied to two operands equals the value of a binary operation applied to the two operands in reversed order. By this definition, the commutative law is expressed as binary relation: a binary operation is related to a set by comLaw if the commutative law holds for this binary operation regarding this set. Note that the binary operation needs neither to be closed nor to be a function. (Contributed by AV, 7-Jan-2020.) |
| ⊢ comLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)} | ||
| Definition | df-asslaw 48218* | The associative law for binary operations, see definitions of laws A1. and M1. in section 1.1 of [Hall] p. 1, or definition 5 in [BourbakiAlg1] p. 4: the value of a binary operation applied the value of the binary operation applied to two operands and a third operand equals the value of the binary operation applied to the first operand and the value of the binary operation applied to the second and third operand. By this definition, the associative law is expressed as binary relation: a binary operation is related to a set by assLaw if the associative law holds for this binary operation regarding this set. Note that the binary operation needs neither to be closed nor to be a function. (Contributed by FL, 1-Nov-2009.) (Revised by AV, 13-Jan-2020.) |
| ⊢ assLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} | ||
| Theorem | iscllaw 48219* | The predicate "is a closed operation". (Contributed by AV, 13-Jan-2020.) |
| ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | ||
| Theorem | iscomlaw 48220* | The predicate "is a commutative operation". (Contributed by AV, 20-Jan-2020.) |
| ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ comLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) | ||
| Theorem | clcllaw 48221 | Closure of a closed operation. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 21-Jan-2020.) |
| ⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) | ||
| Theorem | isasslaw 48222* | The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (Revised by AV, 13-Jan-2020.) |
| ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) | ||
| Theorem | asslawass 48223* | Associativity of an associative operation. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 21-Jan-2020.) |
| ⊢ ( ⚬ assLaw 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) | ||
| Theorem | mgmplusgiopALT 48224 | Slot 2 (group operation) of a magma as extensible structure is a closed operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) | ||
| Theorem | sgrpplusgaopALT 48225 | Slot 2 (group operation) of a semigroup as extensible structure is an associative operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐺 ∈ Smgrp → (+g‘𝐺) assLaw (Base‘𝐺)) | ||
In this subsection, "internal binary operations" obeying different laws are defined. | ||
| Syntax | cintop 48226 | Extend class notation with class of internal (binary) operations for a set. |
| class intOp | ||
| Syntax | cclintop 48227 | Extend class notation with class of closed operations for a set. |
| class clIntOp | ||
| Syntax | cassintop 48228 | Extend class notation with class of associative operations for a set. |
| class assIntOp | ||
| Definition | df-intop 48229* | Function mapping a set to the class of all internal (binary) operations for this set. (Contributed by AV, 20-Jan-2020.) |
| ⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚))) | ||
| Definition | df-clintop 48230 | Function mapping a set to the class of all closed (internal binary) operations for this set, see definition in section 1.2 of [Hall] p. 2, definition in section I.1 of [Bruck] p. 1, or definition 1 in [BourbakiAlg1] p. 1, where it is called "a law of composition". (Contributed by AV, 20-Jan-2020.) |
| ⊢ clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚)) | ||
| Definition | df-assintop 48231* | Function mapping a set to the class of all associative (closed internal binary) operations for this set, see definition 5 in [BourbakiAlg1] p. 4, where it is called "an associative law of composition". (Contributed by AV, 20-Jan-2020.) |
| ⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) | ||
| Theorem | intopval 48232 | The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑m (𝑀 × 𝑀))) | ||
| Theorem | intop 48233 | An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
| ⊢ ( ⚬ ∈ (𝑀 intOp 𝑁) → ⚬ :(𝑀 × 𝑀)⟶𝑁) | ||
| Theorem | clintopval 48234 | The closed (internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
| ⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) | ||
| Theorem | assintopval 48235* | The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
| ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) | ||
| Theorem | assintopmap 48236* | The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020.) |
| ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) | ||
| Theorem | isclintop 48237 | The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
| ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) | ||
| Theorem | clintop 48238 | A closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
| ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ :(𝑀 × 𝑀)⟶𝑀) | ||
| Theorem | assintop 48239 | An associative (closed internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
| ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) | ||
| Theorem | isassintop 48240* | The predicate "is an associative (closed internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
| ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp ‘𝑀) ↔ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))))) | ||
| Theorem | clintopcllaw 48241 | The closure law holds for a closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
| ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) | ||
| Theorem | assintopcllaw 48242 | The closure low holds for an associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
| ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ clLaw 𝑀) | ||
| Theorem | assintopasslaw 48243 | The associative low holds for a associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
| ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ assLaw 𝑀) | ||
| Theorem | assintopass 48244* | An associative (closed internal binary) operation for a set is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
| ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) | ||
| Syntax | cmgm2 48245 | Extend class notation with class of all magmas. |
| class MgmALT | ||
| Syntax | ccmgm2 48246 | Extend class notation with class of all commutative magmas. |
| class CMgmALT | ||
| Syntax | csgrp2 48247 | Extend class notation with class of all semigroups. |
| class SGrpALT | ||
| Syntax | ccsgrp2 48248 | Extend class notation with class of all commutative semigroups. |
| class CSGrpALT | ||
| Definition | df-mgm2 48249 | A magma is a set equipped with a closed operation. Definition 1 of [BourbakiAlg1] p. 1, or definition of a groupoid in section I.1 of [Bruck] p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by AV, 6-Jan-2020.) |
| ⊢ MgmALT = {𝑚 ∣ (+g‘𝑚) clLaw (Base‘𝑚)} | ||
| Definition | df-cmgm2 48250 | A commutative magma is a magma with a commutative operation. Definition 8 of [BourbakiAlg1] p. 7. (Contributed by AV, 20-Jan-2020.) |
| ⊢ CMgmALT = {𝑚 ∈ MgmALT ∣ (+g‘𝑚) comLaw (Base‘𝑚)} | ||
| Definition | df-sgrp2 48251 | A semigroup is a magma with an associative operation. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4, or of a semigroup in section 1.3 of [Hall] p. 7. (Contributed by AV, 6-Jan-2020.) |
| ⊢ SGrpALT = {𝑔 ∈ MgmALT ∣ (+g‘𝑔) assLaw (Base‘𝑔)} | ||
| Definition | df-csgrp2 48252 | A commutative semigroup is a semigroup with a commutative operation. (Contributed by AV, 20-Jan-2020.) |
| ⊢ CSGrpALT = {𝑔 ∈ SGrpALT ∣ (+g‘𝑔) comLaw (Base‘𝑔)} | ||
| Theorem | ismgmALT 48253 | The predicate "is a magma". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ MgmALT ↔ ⚬ clLaw 𝐵)) | ||
| Theorem | iscmgmALT 48254 | The predicate "is a commutative magma". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ comLaw 𝐵)) | ||
| Theorem | issgrpALT 48255 | The predicate "is a semigroup". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ assLaw 𝐵)) | ||
| Theorem | iscsgrpALT 48256 | The predicate "is a commutative semigroup". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ CSGrpALT ↔ (𝑀 ∈ SGrpALT ∧ ⚬ comLaw 𝐵)) | ||
| Theorem | mgm2mgm 48257 | Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.) |
| ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) | ||
| Theorem | sgrp2sgrp 48258 | Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020.) |
| ⊢ (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp) | ||
| Theorem | lmod0rng 48259 | If the scalar ring of a module is the zero ring, the module is the zero module, i.e. the base set of the module is the singleton consisting of the identity element only. (Contributed by AV, 17-Apr-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing) → (Base‘𝑀) = {(0g‘𝑀)}) | ||
| Theorem | nzrneg1ne0 48260 | The additive inverse of the 1 in a nonzero ring is not zero ( -1 =/= 0 ). (Contributed by AV, 29-Apr-2019.) |
| ⊢ (𝑅 ∈ NzRing → ((invg‘𝑅)‘(1r‘𝑅)) ≠ (0g‘𝑅)) | ||
| Theorem | lidldomn1 48261* | If a (left) ideal (which is not the zero ideal) of a domain has a multiplicative identity element, the identity element is the identity of the domain. (Contributed by AV, 17-Feb-2020.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 }) ∧ 𝐼 ∈ 𝑈) → (∀𝑥 ∈ 𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )) | ||
| Theorem | lidlabl 48262 | A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Abel) | ||
| Theorem | lidlrng 48263 | A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) (Proof shortened by AV, 11-Mar-2025.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Rng) | ||
| Theorem | zlidlring 48264 | The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring) | ||
| Theorem | uzlidlring 48265 | Only the zero (left) ideal or the unit (left) ideal of a domain is a unital ring. (Contributed by AV, 18-Feb-2020.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) | ||
| Theorem | lidldomnnring 48266 | A (left) ideal of a domain which is neither the zero ideal nor the unit ideal is not a unital ring. (Contributed by AV, 18-Feb-2020.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → 𝐼 ∉ Ring) | ||
| Theorem | 0even 48267* | 0 is an even integer. (Contributed by AV, 11-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⇒ ⊢ 0 ∈ 𝐸 | ||
| Theorem | 1neven 48268* | 1 is not an even integer. (Contributed by AV, 12-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⇒ ⊢ 1 ∉ 𝐸 | ||
| Theorem | 2even 48269* | 2 is an even integer. (Contributed by AV, 12-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⇒ ⊢ 2 ∈ 𝐸 | ||
| Theorem | 2zlidl 48270* | The even integers are a (left) ideal of the ring of integers. (Contributed by AV, 20-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑈 = (LIdeal‘ℤring) ⇒ ⊢ 𝐸 ∈ 𝑈 | ||
| Theorem | 2zrng 48271* | The ring of integers restricted to the even integers is a non-unital ring, the "ring of even integers". Remark: the structure of the complementary subset of the set of integers, the odd integers, is not even a magma, see oddinmgm 48205. (Contributed by AV, 20-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑈 = (LIdeal‘ℤring) & ⊢ 𝑅 = (ℤring ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Rng | ||
| Theorem | 2zrngbas 48272* | The base set of R is the set of all even integers. (Contributed by AV, 31-Jan-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝐸 = (Base‘𝑅) | ||
| Theorem | 2zrngadd 48273* | The group addition operation of R is the addition of complex numbers. (Contributed by AV, 31-Jan-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ + = (+g‘𝑅) | ||
| Theorem | 2zrng0 48274* | The additive identity of R is the complex number 0. (Contributed by AV, 11-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 0 = (0g‘𝑅) | ||
| Theorem | 2zrngamgm 48275* | R is an (additive) magma. (Contributed by AV, 6-Jan-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Mgm | ||
| Theorem | 2zrngasgrp 48276* | R is an (additive) semigroup. (Contributed by AV, 4-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Smgrp | ||
| Theorem | 2zrngamnd 48277* | R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Mnd | ||
| Theorem | 2zrngacmnd 48278* | R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ CMnd | ||
| Theorem | 2zrngagrp 48279* | R is an (additive) group. (Contributed by AV, 6-Jan-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Grp | ||
| Theorem | 2zrngaabl 48280* | R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Abel | ||
| Theorem | 2zrngmul 48281* | The ring multiplication operation of R is the multiplication on complex numbers. (Contributed by AV, 31-Jan-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ · = (.r‘𝑅) | ||
| Theorem | 2zrngmmgm 48282* | R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑀 ∈ Mgm | ||
| Theorem | 2zrngmsgrp 48283* | R is a (multiplicative) semigroup. (Contributed by AV, 4-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑀 ∈ Smgrp | ||
| Theorem | 2zrngALT 48284* | The ring of integers restricted to the even integers is a non-unital ring, the "ring of even integers". Alternate version of 2zrng 48271, based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl 48280) and a multiplicative semigroup (see 2zrngmsgrp 48283). (Contributed by AV, 11-Feb-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑅 ∈ Rng | ||
| Theorem | 2zrngnmlid 48285* | R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 | ||
| Theorem | 2zrngnmrid 48286* | R has no multiplicative (right) identity. (Contributed by AV, 12-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 | ||
| Theorem | 2zrngnmlid2 48287* | R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 | ||
| Theorem | 2zrngnring 48288* | R is not a unital ring. (Contributed by AV, 6-Jan-2020.) |
| ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑅 ∉ Ring | ||
| Theorem | cznrnglem 48289 | Lemma for cznrng 48291: The base set of the ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is the base set of the ℤ/nℤ structure. (Contributed by AV, 16-Feb-2020.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) ⇒ ⊢ 𝐵 = (Base‘𝑋) | ||
| Theorem | cznabel 48290 | The ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is an abelian group. (Contributed by AV, 16-Feb-2020.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Abel) | ||
| Theorem | cznrng 48291* | The ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is a non-unital ring. (Contributed by AV, 17-Feb-2020.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) & ⊢ 0 = (0g‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng) | ||
| Theorem | cznnring 48292* | The ring constructed from a ℤ/nℤ structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) & ⊢ 0 = (0g‘𝑌) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) | ||
As an alternative to df-rngc 20530, the "category of non-unital rings" can be defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, according to dfrngc2 20541. | ||
| Syntax | crngcALTV 48293 | Extend class notation to include the category Rng. (New usage is discouraged.) |
| class RngCatALTV | ||
| Definition | df-rngcALTV 48294* | Definition of the category Rng, relativized to a subset 𝑢. This is the category of all non-unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| ⊢ RngCatALTV = (𝑢 ∈ V ↦ ⦋(𝑢 ∩ Rng) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 RngHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) | ||
| Theorem | rngcvalALTV 48295* | Value of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHom 𝑦))) & ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
| Theorem | rngcbasALTV 48296 | Set of objects of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | ||
| Theorem | rngchomfvalALTV 48297* | Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHom 𝑦))) | ||
| Theorem | rngchomALTV 48298 | Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RngHom 𝑌)) | ||
| Theorem | elrngchomALTV 48299 | A morphism of non-unital rings is a function. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
| Theorem | rngccofvalALTV 48300* | Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |