| Metamath
Proof Explorer Theorem List (p. 483 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | gpg3nbgrvtx0ALT 48201 |
In a generalized Petersen graph 𝐺, every outside vertex has exactly
three (different) neighbors. (Contributed by AV, 30-Aug-2025.)
The proof of gpg3nbgrvtx0 48200 can be shortened using modmknepk 47486, but then theorem 2ltceilhalf 47452 is required which is based on an "example" ex-ceil 30430. If these theorems were moved to main, the "example" should also be moved up to become a full-fledged theorem. (Proof shortened by AV, 4-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) | ||
| Theorem | gpg3nbgrvtx1 48202 | In a generalized Petersen graph 𝐺, every inside vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (♯‘𝑈) = 3) | ||
| Theorem | gpgcubic 48203 | Every generalized Petersen graph is a cubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 48206), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) | ||
| Theorem | gpg5nbgrvtx03star 48204* | In a generalized Petersen graph G(N,K) of order greater than 8 (3 < 𝑁), every outside vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every outside vertex induces a subgraph which is isomorphic to a 3-star). (Contributed by AV, 31-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) | ||
| Theorem | gpg5nbgr3star 48205* | In a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), these are the Petersen graph G(5,2) and the 5-prism G(5,1), every vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every vertex induces a subgraph which is isomorphic to a 3-star). This does not hold for every generalized Petersen graph: for example, in the 3-prism G(3,1) (see gpg31grim3prism TODO) and the Dürer graph G(6,2) there are vertices which have neighborhoods containing triangles. In general, all generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles, see gpg3kgrtriex 48213. (Contributed by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) | ||
| Theorem | gpgvtxdg3 48206 | Every vertex in a generalized Petersen graph has degree 3. (Contributed by AV, 4-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = 3) | ||
| Theorem | gpg3kgrtriexlem1 48207 | Lemma 1 for gpg3kgrtriex 48213. (Contributed by AV, 1-Oct-2025.) |
| ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2))) | ||
| Theorem | gpg3kgrtriexlem2 48208 | Lemma 2 for gpg3kgrtriex 48213. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)) | ||
| Theorem | gpg3kgrtriexlem3 48209 | Lemma 3 for gpg3kgrtriex 48213. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ≥‘3)) | ||
| Theorem | gpg3kgrtriexlem4 48210 | Lemma 4 for gpg3kgrtriex 48213. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) | ||
| Theorem | gpg3kgrtriexlem5 48211 | Lemma 5 for gpg3kgrtriex 48213. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) | ||
| Theorem | gpg3kgrtriexlem6 48212 | Lemma 6 for gpg3kgrtriex 48213: 𝐸 is an edge in the generalized Petersen graph G(N,K) with 𝑁 = 3 · 𝐾. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} ⇒ ⊢ (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺)) | ||
| Theorem | gpg3kgrtriex 48213* | All generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) | ||
| Theorem | gpg5gricstgr3 48214 | Each closed neighborhood in a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is isomorphic to a 3-star. (Contributed by AV, 13-Sep-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 𝐾) ⇒ ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3)) | ||
| Theorem | pglem 48215 | Lemma for theorems about Petersen graphs. (Contributed by AV, 10-Nov-2025.) |
| ⊢ 2 ∈ (1..^(⌈‘(5 / 2))) | ||
| Theorem | pgjsgr 48216 | A Petersen graph is a simple graph. (Contributed by AV, 10-Nov-2025.) |
| ⊢ (5 gPetersenGr 2) ∈ USGraph | ||
| Theorem | gpg5grlim 48217 | A local isomorphism between the two generalized Petersen graphs G(N,K) of order 10 (𝑁 = 5), which are the Petersen graph G(5,2) and the 5-prism G(5,1). (Contributed by AV, 28-Dec-2025.) |
| ⊢ ( I ↾ ({0, 1} × (0..^5))) ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2)) | ||
| Theorem | gpg5grlic 48218 | The two generalized Petersen graphs G(N,K) of order 10 (𝑁 = 5), which are the Petersen graph G(5,2) and the 5-prism G(5,1), are locally isomorphic. (Contributed by AV, 29-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.) |
| ⊢ (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2) | ||
| Theorem | gpgprismgr4cycllem1 48219 | Lemma 1 for gpgprismgr4cycl0 48230: the cycle 〈𝑃, 𝐹〉 consists of 4 edges (i.e., has length 4). (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ (♯‘𝐹) = 4 | ||
| Theorem | gpgprismgr4cycllem2 48220 | Lemma 2 for gpgprismgr4cycl0 48230: the cycle 〈𝑃, 𝐹〉 is proper, i.e., it has no overlapping edges. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ Fun ◡𝐹 | ||
| Theorem | gpgprismgr4cycllem3 48221* | Lemma 3 for gpgprismgr4cycl0 48230. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ (0..^4)) → ((𝐹‘𝑋) ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∧ ∃𝑥 ∈ (0..^𝑁)((𝐹‘𝑋) = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ (𝐹‘𝑋) = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ (𝐹‘𝑋) = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgr4cycllem4 48222 | Lemma 4 for gpgprismgr4cycl0 48230: the cycle 〈𝑃, 𝐹〉 consists of 5 vertices (the first and the last vertex are identical, see gpgprismgr4cycllem6 48224. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ (♯‘𝑃) = 5 | ||
| Theorem | gpgprismgr4cycllem5 48223 | Lemma 5 for gpgprismgr4cycl0 48230. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ 𝑃 ∈ Word V | ||
| Theorem | gpgprismgr4cycllem6 48224 | Lemma 6 for gpgprismgr4cycl0 48230: the cycle 〈𝑃, 𝐹〉 is closed, i.e., the first and the last vertex are identical. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ (𝑃‘0) = (𝑃‘4) | ||
| Theorem | gpgprismgr4cycllem7 48225 | Lemma 7 for gpgprismgr4cycl0 48230: the cycle 〈𝑃, 𝐹〉 is proper, i.e., it has no overlapping vertices, except the first and the last one. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ ((𝑋 ∈ (0..^(♯‘𝑃)) ∧ 𝑌 ∈ (1..^4)) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) | ||
| Theorem | gpgprismgr4cycllem8 48226 | Lemma 8 for gpgprismgr4cycl0 48230. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹 ∈ Word dom (iEdg‘𝐺)) | ||
| Theorem | gpgprismgr4cycllem9 48227 | Lemma 9 for gpgprismgr4cycl0 48230. (Contributed by AV, 3-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) | ||
| Theorem | gpgprismgr4cycllem10 48228 | Lemma 10 for gpgprismgr4cycl0 48230. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑋)) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) | ||
| Theorem | gpgprismgr4cycllem11 48229 | Lemma 11 for gpgprismgr4cycl0 48230. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | gpgprismgr4cycl0 48230 | The generalized Petersen graphs G(N,1), which are the N-prisms, have a cycle of length 4 starting at the vertex 〈0, 0〉. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4)) | ||
| Theorem | gpgprismgr4cyclex 48231* | The generalized Petersen graphs G(N,1), which are the N-prisms, have (at least) one cycle of length 4. (Contributed by AV, 5-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝∃𝑓(𝑓(Cycles‘(𝑁 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4)) | ||
| Theorem | pgnioedg1 48232 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnioedg2 48233 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 + 2) mod 5)〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnioedg3 48234 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 + 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnioedg4 48235 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnioedg5 48236 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 − 1) mod 5)〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnbgreunbgrlem1 48237* | Lemma 1 for pgnbgreunbgr 48249. (Contributed by AV, 15-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝐿 = 〈0, (((2nd ‘𝑋) + 1) mod 5)〉 ∨ 𝐿 = 〈1, (2nd ‘𝑋)〉 ∨ 𝐿 = 〈0, (((2nd ‘𝑋) − 1) mod 5)〉) → ((𝐾 = 〈0, (((2nd ‘𝑋) + 1) mod 5)〉 ∨ 𝐾 = 〈1, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈0, (((2nd ‘𝑋) − 1) mod 5)〉) → ((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈0, 𝑦〉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ∧ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈0, 𝑏〉))))) | ||
| Theorem | pgnbgreunbgrlem2lem1 48238* | Lemma 1 for pgnbgreunbgrlem2 48241. (Contributed by AV, 16-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈0, 𝑏〉} ∈ 𝐸) → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) | ||
| Theorem | pgnbgreunbgrlem2lem2 48239* | Lemma 2 for pgnbgreunbgrlem2 48241. (Contributed by AV, 16-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((((𝐿 = 〈1, ((𝑦 − 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈0, 𝑏〉} ∈ 𝐸) → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) | ||
| Theorem | pgnbgreunbgrlem2lem3 48240* | Lemma 3 for pgnbgreunbgrlem2 48241. (Contributed by AV, 17-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈1, ((𝑦 − 2) mod 5)〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈0, 𝑏〉} ∈ 𝐸) → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) | ||
| Theorem | pgnbgreunbgrlem2 48241* | Lemma 2 for pgnbgreunbgr 48249. Impossible cases. (Contributed by AV, 18-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝐿 = 〈1, (((2nd ‘𝑋) + 2) mod 5)〉 ∨ 𝐿 = 〈0, (2nd ‘𝑋)〉 ∨ 𝐿 = 〈1, (((2nd ‘𝑋) − 2) mod 5)〉) → ((𝐾 = 〈1, (((2nd ‘𝑋) + 2) mod 5)〉 ∨ 𝐾 = 〈0, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈1, (((2nd ‘𝑋) − 2) mod 5)〉) → ((𝑋 = 〈1, 𝑦〉 ∧ 𝑋 ∈ 𝑉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ∧ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈0, 𝑏〉))))) | ||
| Theorem | pgnbgreunbgrlem3 48242 | Lemma 3 for pgnbgreunbgr 48249. (Contributed by AV, 18-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ∧ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈0, 𝑏〉)) | ||
| Theorem | pgnbgreunbgrlem4 48243* | Lemma 4 for pgnbgreunbgr 48249. (Contributed by AV, 20-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝐿 = 〈1, (((2nd ‘𝑋) + 2) mod 5)〉 ∨ 𝐿 = 〈0, (2nd ‘𝑋)〉 ∨ 𝐿 = 〈1, (((2nd ‘𝑋) − 2) mod 5)〉) → ((𝐾 = 〈1, (((2nd ‘𝑋) + 2) mod 5)〉 ∨ 𝐾 = 〈0, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈1, (((2nd ‘𝑋) − 2) mod 5)〉) → ((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) | ||
| Theorem | pgnbgreunbgrlem5lem1 48244* | Lemma 1 for pgnbgreunbgrlem5 48247. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈1, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈1, 𝑏〉} ∈ 𝐸) → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) | ||
| Theorem | pgnbgreunbgrlem5lem2 48245* | Lemma 2 for pgnbgreunbgrlem5 48247. (Contributed by AV, 20-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((((𝐿 = 〈0, ((𝑦 − 1) mod 5)〉 ∧ 𝐾 = 〈1, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈1, 𝑏〉} ∈ 𝐸) → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) | ||
| Theorem | pgnbgreunbgrlem5lem3 48246* | Lemma 3 for pgnbgreunbgrlem5 48247. (Contributed by AV, 20-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈0, ((𝑦 − 1) mod 5)〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈1, 𝑏〉} ∈ 𝐸) → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) | ||
| Theorem | pgnbgreunbgrlem5 48247* | Lemma 5 for pgnbgreunbgr 48249. Impossible cases. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝐿 = 〈0, (((2nd ‘𝑋) + 1) mod 5)〉 ∨ 𝐿 = 〈1, (2nd ‘𝑋)〉 ∨ 𝐿 = 〈0, (((2nd ‘𝑋) − 1) mod 5)〉) → ((𝐾 = 〈0, (((2nd ‘𝑋) + 1) mod 5)〉 ∨ 𝐾 = 〈1, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈0, (((2nd ‘𝑋) − 1) mod 5)〉) → ((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) | ||
| Theorem | pgnbgreunbgrlem6 48248 | Lemma 6 for pgnbgreunbgr 48249. (Contributed by AV, 20-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)) | ||
| Theorem | pgnbgreunbgr 48249* | In a Petersen graph, two different neighbors of a vertex have exactly one common neighbor, which is the vertex itself. (Contributed by AV, 9-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → ∃!𝑥 ∈ 𝑉 {{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸) | ||
| Theorem | pgn4cyclex 48250 | A cycle in a Petersen graph G(5,2) does not have length 4. (Contributed by AV, 9-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) ⇒ ⊢ (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 4) | ||
| Theorem | pg4cyclnex 48251 | In the Petersen graph G(5,2), there is no cycle of length 4. (Contributed by AV, 22-Nov-2025.) |
| ⊢ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4) | ||
| Theorem | gpg5ngric 48252 | The two generalized Petersen graphs G(5,K) of order 10, which are the Petersen graph G(5,2) and the 5-prism G(5,1), are not isomorphic. (Contributed by AV, 22-Nov-2025.) |
| ⊢ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2) | ||
| Theorem | lgricngricex 48253* | There are two different locally isomorphic graphs which are not isomorphic. (Contributed by AV, 23-Nov-2025.) |
| ⊢ ∃𝑔∃ℎ(𝑔 ≃𝑙𝑔𝑟 ℎ ∧ ¬ 𝑔 ≃𝑔𝑟 ℎ) | ||
| Theorem | gpg5edgnedg 48254 | Two consecutive (according to the numbering) inside vertices of the Petersen graph G(5,2) are not connected by an edge, but are connected by an edge in a 5-prism G(5,1). (Contributed by AV, 29-Dec-2025.) |
| ⊢ ({〈1, 0〉, 〈1, 1〉} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {〈1, 0〉, 〈1, 1〉} ∉ (Edg‘(5 gPetersenGr 2))) | ||
| Theorem | grlimedgnedg 48255* | In general, the image of an edge of a graph by a local isomprphism is not an edge of the other graph, proven by an example (see gpg5edgnedg 48254). This theorem proves that the analogon (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ 𝐾 ∈ 𝐼)) → (𝐹 “ 𝐾) ∈ 𝐸) of grimedgi 48060 for ordinarily isomorphic graphs does not hold in general. (Contributed by AV, 30-Dec-2025.) |
| ⊢ ∃𝑔 ∈ USGraph ∃ℎ ∈ USGraph ∃𝑓 ∈ (𝑔 GraphLocIso ℎ)∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)) | ||
| Theorem | 1hegrlfgr 48256* | A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) ⇒ ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) | ||
| Syntax | cupwlks 48257 | Extend class notation with walks (of a pseudograph). |
| class UPWalks | ||
| Definition | df-upwlks 48258* |
Define the set of all walks (in a pseudograph), called "simple walks"
in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
| Theorem | upwlksfval 48259* | The set of simple walks (in an undirected graph). (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (UPWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
| Theorem | isupwlk 48260* | Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | isupwlkg 48261* | Generalization of isupwlk 48260: Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | upwlkbprop 48262 | Basic properties of a simple walk. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 29-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | ||
| Theorem | upwlkwlk 48263 | A simple walk is a walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 27-Feb-2021.) |
| ⊢ (𝐹(UPWalks‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | upgrwlkupwlk 48264 | In a pseudograph, a walk is a simple walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 2-Jan-2021.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → 𝐹(UPWalks‘𝐺)𝑃) | ||
| Theorem | upgrwlkupwlkb 48265 | In a pseudograph, the definitions for a walk and a simple walk are equivalent. (Contributed by AV, 30-Dec-2020.) |
| ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ 𝐹(UPWalks‘𝐺)𝑃)) | ||
| Theorem | upgrisupwlkALT 48266* | Alternate proof of upgriswlk 29621 using the definition of UPGraph and related theorems. (Contributed by AV, 2-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | upgredgssspr 48267 | The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 24-Nov-2021.) |
| ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ (Pairs‘(Vtx‘𝐺))) | ||
| Theorem | uspgropssxp 48268* | The set 𝐺 of "simple pseudographs" for a fixed set 𝑉 of vertices is a subset of a Cartesian product. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 48278. (Contributed by AV, 24-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) | ||
| Theorem | uspgrsprfv 48269* | The value of the function 𝐹 which maps a "simple pseudograph" for a fixed set 𝑉 of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for 𝐺 as defined here, the function 𝐹 is a bijection between the "simple pseudographs" and the subsets of the set of pairs 𝑃 over the fixed set 𝑉 of vertices, see uspgrbispr 48275. (Contributed by AV, 24-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑋 ∈ 𝐺 → (𝐹‘𝑋) = (2nd ‘𝑋)) | ||
| Theorem | uspgrsprf 48270* | The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 24-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ 𝐹:𝐺⟶𝑃 | ||
| Theorem | uspgrsprf1 48271* | The mapping 𝐹 is a one-to-one function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ 𝐹:𝐺–1-1→𝑃 | ||
| Theorem | uspgrsprfo 48272* | The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 onto the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝐺–onto→𝑃) | ||
| Theorem | uspgrsprf1o 48273* | The mapping 𝐹 is a bijection between the "simple pseudographs" with a fixed set of vertices 𝑉 and the subsets of the set of pairs over the set 𝑉. See also the comments on uspgrbisymrel 48278. (Contributed by AV, 25-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝐺–1-1-onto→𝑃) | ||
| Theorem | uspgrex 48274* | The class 𝐺 of all "simple pseudographs" with a fixed set of vertices 𝑉 is a set. (Contributed by AV, 26-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) | ||
| Theorem | uspgrbispr 48275* | There is a bijection between the "simple pseudographs" with a fixed set of vertices 𝑉 and the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 26-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑃) | ||
| Theorem | uspgrspren 48276* | The set 𝐺 of the "simple pseudographs" with a fixed set of vertices 𝑉 and the class 𝑃 of subsets of the set of pairs over the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ≈ 𝑃) | ||
| Theorem | uspgrymrelen 48277* | The set 𝐺 of the "simple pseudographs" with a fixed set of vertices 𝑉 and the class 𝑅 of the symmetric relations on the fixed set 𝑉 are equinumerous. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 48278. (Contributed by AV, 27-Nov-2021.) |
| ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ≈ 𝑅) | ||
| Theorem | uspgrbisymrel 48278* |
There is a bijection between the "simple pseudographs" for a fixed
set
𝑉 of vertices and the class 𝑅 of the
symmetric relations on the
fixed set 𝑉. The simple pseudographs, which are
graphs without
hyper- or multiedges, but which may contain loops, are expressed as
ordered pairs of the vertices and the edges (as proper or improper
unordered pairs of vertices, not as indexed edges!) in this theorem.
That class 𝐺 of such simple pseudographs is a set
(if 𝑉 is a
set, see uspgrex 48274) of equivalence classes of graphs
abstracting from
the index sets of their edge functions.
Solely for this abstraction, there is a bijection between the "simple pseudographs" as members of 𝐺 and the symmetric relations 𝑅 on the fixed set 𝑉 of vertices. This theorem would not hold for 𝐺 = {𝑔 ∈ USPGraph ∣ (Vtx‘𝑔) = 𝑉} and even not for 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ 〈𝑣, 𝑒〉 ∈ USPGraph)}, because these are much bigger classes. (Proposed by Gerard Lang, 16-Nov-2021.) (Contributed by AV, 27-Nov-2021.) |
| ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) | ||
| Theorem | uspgrbisymrelALT 48279* | Alternate proof of uspgrbisymrel 48278 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) | ||
| Theorem | ovn0dmfun 48280 | If a class operation value for two operands is not the empty set, then the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6868. (Contributed by AV, 27-Jan-2020.) |
| ⊢ ((𝐴𝐹𝐵) ≠ ∅ → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}))) | ||
| Theorem | xpsnopab 48281* | A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.) |
| ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} | ||
| Theorem | xpiun 48282* | A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.) |
| ⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} | ||
| Theorem | ovn0ssdmfun 48283* | If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6868. (Contributed by AV, 27-Jan-2020.) |
| ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) | ||
| Theorem | fnxpdmdm 48284 | The domain of the domain of a function over a Cartesian square. (Contributed by AV, 13-Jan-2020.) |
| ⊢ (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴) | ||
| Theorem | cnfldsrngbas 48285 | The base set of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
| ⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ⊆ ℂ → 𝑆 = (Base‘𝑅)) | ||
| Theorem | cnfldsrngadd 48286 | The group addition operation of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
| ⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ 𝑉 → + = (+g‘𝑅)) | ||
| Theorem | cnfldsrngmul 48287 | The ring multiplication operation of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
| ⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ 𝑉 → · = (.r‘𝑅)) | ||
| Theorem | plusfreseq 48288 | If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+𝑓‘𝑀) ⇒ ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) | ||
| Theorem | mgmplusfreseq 48289 | If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+𝑓‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) | ||
| Theorem | 0mgm 48290 | A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020.) |
| ⊢ (Base‘𝑀) = ∅ ⇒ ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm) | ||
| Theorem | opmpoismgm 48291* | A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑀 ∈ Mgm) | ||
| Theorem | copissgrp 48292* | A structure with a constant group addition operation is a semigroup if the constant is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑀 ∈ Smgrp) | ||
| Theorem | copisnmnd 48293* | A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 1 < (♯‘𝐵)) ⇒ ⊢ (𝜑 → 𝑀 ∉ Mnd) | ||
| Theorem | 0nodd 48294* | 0 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 0 ∉ 𝑂 | ||
| Theorem | 1odd 48295* | 1 is an odd integer. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 1 ∈ 𝑂 | ||
| Theorem | 2nodd 48296* | 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 2 ∉ 𝑂 | ||
| Theorem | oddibas 48297* | Lemma 1 for oddinmgm 48299: The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ 𝑂 = (Base‘𝑀) | ||
| Theorem | oddiadd 48298* | Lemma 2 for oddinmgm 48299: The group addition operation of M is the addition of complex numbers. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ + = (+g‘𝑀) | ||
| Theorem | oddinmgm 48299* | The structure of all odd integers together with the addition of complex numbers is not a magma. Remark: the structure of the complementary subset of the set of integers, the even integers, is a magma, actually an abelian group, see 2zrngaabl 48374, and even a non-unital ring, see 2zrng 48365. (Contributed by AV, 3-Feb-2020.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ 𝑀 ∉ Mgm | ||
| Theorem | nnsgrpmgm 48300 | The structure of positive integers together with the addition of complex numbers is a magma. (Contributed by AV, 4-Feb-2020.) |
| ⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∈ Mgm | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |