Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbiffatnnbalt Structured version   Visualization version   GIF version

Theorem atbiffatnnbalt 44409
Description: If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 29-Aug-2016.)
Assertion
Ref Expression
atbiffatnnbalt ((𝜑𝜓) → (𝜑 → ¬ ¬ 𝜓))

Proof of Theorem atbiffatnnbalt
StepHypRef Expression
1 atbiffatnnb 44407 1 ((𝜑𝜓) → (𝜑 → ¬ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator