Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > abnotbtaxb | Structured version Visualization version GIF version |
Description: Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
abnotbtaxb.1 | ⊢ 𝜑 |
abnotbtaxb.2 | ⊢ ¬ 𝜓 |
Ref | Expression |
---|---|
abnotbtaxb | ⊢ (𝜑 ⊻ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnotbtaxb.1 | . . 3 ⊢ 𝜑 | |
2 | abnotbtaxb.2 | . . 3 ⊢ ¬ 𝜓 | |
3 | xor3 383 | . . . 4 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
4 | pm5.1 820 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝜓) → (𝜑 ↔ ¬ 𝜓)) | |
5 | ibibr 368 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝜓) → (𝜑 ↔ ¬ 𝜓)) ↔ ((𝜑 ∧ ¬ 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)))) | |
6 | 4, 5 | mpbi 229 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓))) |
7 | 1, 2, 6 | mp2an 688 | . . . 4 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) |
8 | 3, 7 | bitri 274 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) |
9 | 1, 2, 8 | mpbir2an 707 | . 2 ⊢ ¬ (𝜑 ↔ 𝜓) |
10 | df-xor 1504 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
11 | 9, 10 | mpbir 230 | 1 ⊢ (𝜑 ⊻ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-xor 1504 |
This theorem is referenced by: aistbisfiaxb 44301 aifftbifffaibifff 44304 |
Copyright terms: Public domain | W3C validator |