|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abnotbtaxb | Structured version Visualization version GIF version | ||
| Description: Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| abnotbtaxb.1 | ⊢ 𝜑 | 
| abnotbtaxb.2 | ⊢ ¬ 𝜓 | 
| Ref | Expression | 
|---|---|
| abnotbtaxb | ⊢ (𝜑 ⊻ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abnotbtaxb.1 | . . 3 ⊢ 𝜑 | |
| 2 | abnotbtaxb.2 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | xor3 382 | . . . 4 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
| 4 | pm5.1 824 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝜓) → (𝜑 ↔ ¬ 𝜓)) | |
| 5 | ibibr 368 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝜓) → (𝜑 ↔ ¬ 𝜓)) ↔ ((𝜑 ∧ ¬ 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)))) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓))) | 
| 7 | 1, 2, 6 | mp2an 692 | . . . 4 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) | 
| 8 | 3, 7 | bitri 275 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) | 
| 9 | 1, 2, 8 | mpbir2an 711 | . 2 ⊢ ¬ (𝜑 ↔ 𝜓) | 
| 10 | df-xor 1512 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
| 11 | 9, 10 | mpbir 231 | 1 ⊢ (𝜑 ⊻ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ⊻ wxo 1511 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-xor 1512 | 
| This theorem is referenced by: aistbisfiaxb 46931 aifftbifffaibifff 46934 | 
| Copyright terms: Public domain | W3C validator |