Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-exfinfld Structured version   Visualization version   GIF version

Axiom ax-exfinfld 42182
Description: Existence axiom for finite fields, eventually we want to construct them. (Contributed by metakunt, 13-Jul-2025.)
Assertion
Ref Expression
ax-exfinfld 𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
Distinct variable group:   𝑛,𝑝,𝑘

Detailed syntax breakdown of Axiom ax-exfinfld
StepHypRef Expression
1 vk . . . . . . . . 9 setvar 𝑘
21cv 1539 . . . . . . . 8 class 𝑘
3 cbs 17185 . . . . . . . 8 class Base
42, 3cfv 6519 . . . . . . 7 class (Base‘𝑘)
5 chash 14305 . . . . . . 7 class
64, 5cfv 6519 . . . . . 6 class (♯‘(Base‘𝑘))
7 vp . . . . . . . 8 setvar 𝑝
87cv 1539 . . . . . . 7 class 𝑝
9 vn . . . . . . . 8 setvar 𝑛
109cv 1539 . . . . . . 7 class 𝑛
11 cexp 14036 . . . . . . 7 class
128, 10, 11co 7394 . . . . . 6 class (𝑝𝑛)
136, 12wceq 1540 . . . . 5 wff (♯‘(Base‘𝑘)) = (𝑝𝑛)
14 cchr 21417 . . . . . . 7 class chr
152, 14cfv 6519 . . . . . 6 class (chr‘𝑘)
1615, 8wceq 1540 . . . . 5 wff (chr‘𝑘) = 𝑝
1713, 16wa 395 . . . 4 wff ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
18 cfield 20645 . . . 4 class Field
1917, 1, 18wrex 3055 . . 3 wff 𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
20 cn 12197 . . 3 class
2119, 9, 20wral 3046 . 2 wff 𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
22 cprime 16647 . 2 class
2321, 7, 22wral 3046 1 wff 𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
Colors of variables: wff setvar class
This axiom is referenced by:  exfinfldd  42183
  Copyright terms: Public domain W3C validator