Detailed syntax breakdown of Axiom ax-exfinfld
Step | Hyp | Ref
| Expression |
1 | | vk |
. . . . . . . . 9
setvar 𝑘 |
2 | 1 | cv 1536 |
. . . . . . . 8
class 𝑘 |
3 | | cbs 17258 |
. . . . . . . 8
class
Base |
4 | 2, 3 | cfv 6573 |
. . . . . . 7
class
(Base‘𝑘) |
5 | | chash 14379 |
. . . . . . 7
class
♯ |
6 | 4, 5 | cfv 6573 |
. . . . . 6
class
(♯‘(Base‘𝑘)) |
7 | | vp |
. . . . . . . 8
setvar 𝑝 |
8 | 7 | cv 1536 |
. . . . . . 7
class 𝑝 |
9 | | vn |
. . . . . . . 8
setvar 𝑛 |
10 | 9 | cv 1536 |
. . . . . . 7
class 𝑛 |
11 | | cexp 14112 |
. . . . . . 7
class
↑ |
12 | 8, 10, 11 | co 7448 |
. . . . . 6
class (𝑝↑𝑛) |
13 | 6, 12 | wceq 1537 |
. . . . 5
wff
(♯‘(Base‘𝑘)) = (𝑝↑𝑛) |
14 | | cchr 21535 |
. . . . . . 7
class
chr |
15 | 2, 14 | cfv 6573 |
. . . . . 6
class
(chr‘𝑘) |
16 | 15, 8 | wceq 1537 |
. . . . 5
wff
(chr‘𝑘) =
𝑝 |
17 | 13, 16 | wa 395 |
. . . 4
wff
((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) |
18 | | cfield 20752 |
. . . 4
class
Field |
19 | 17, 1, 18 | wrex 3076 |
. . 3
wff
∃𝑘 ∈
Field ((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) |
20 | | cn 12293 |
. . 3
class
ℕ |
21 | 19, 9, 20 | wral 3067 |
. 2
wff
∀𝑛 ∈
ℕ ∃𝑘 ∈
Field ((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) |
22 | | cprime 16718 |
. 2
class
ℙ |
23 | 21, 7, 22 | wral 3067 |
1
wff
∀𝑝 ∈
ℙ ∀𝑛 ∈
ℕ ∃𝑘 ∈
Field ((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) |