Theorem List for Metamath Proof Explorer - 42401-42500 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | eel0cT 42401 |
An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (⊤ → 𝜓) |
|
Theorem | eelT0 42402 |
An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (⊤
→ 𝜑) & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 |
|
Theorem | e0bi 42403 |
Elimination rule identical to mpbi 229. The non-virtual deduction form
is the virtual deduction form, which is mpbi 229.
(Contributed by Alan
Sare, 15-Jun-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ 𝜑 & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ 𝜓 |
|
Theorem | e0bir 42404 |
Elimination rule identical to mpbir 230. The non-virtual deduction form
is the virtual deduction form, which is mpbir 230. (Contributed by Alan
Sare, 15-Jun-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ 𝜑 & ⊢ (𝜓 ↔ 𝜑) ⇒ ⊢ 𝜓 |
|
Theorem | uun0.1 42405 |
Convention notation form of un0.1 42406. (Contributed by Alan Sare,
23-Apr-2015.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (⊤
→ 𝜑) & ⊢ (𝜓 → 𝜒)
& ⊢ ((⊤ ∧ 𝜓) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) |
|
Theorem | un0.1 42406 |
⊤ is the constant true, a tautology (see df-tru 1542). Kleene's
"empty conjunction" is logically equivalent to ⊤. In a virtual
deduction we shall interpret ⊤ to be the
empty wff or the empty
collection of virtual hypotheses. ⊤ in a
virtual deduction
translated into conventional notation we shall interpret to be Kleene's
empty conjunction. If 𝜃 is true given the empty collection
of
virtual hypotheses and another collection of virtual hypotheses, then it
is true given only the other collection of virtual hypotheses.
(Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ( ⊤ ▶ 𝜑 ) & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( ( ⊤ , 𝜓 ) ▶ 𝜃 )
⇒ ⊢ ( 𝜓 ▶ 𝜃 ) |
|
Theorem | uunT1 42407 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 3-Dec-2015.) Proof was revised to
accommodate a possible future version of df-tru 1542. (Revised by David
A. Wheeler, 8-May-2019.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ ((⊤
∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | uunT1p1 42408 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ ⊤) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | uunT21 42409 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 3-Dec-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((⊤
∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uun121 42410 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uun121p1 42411 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uun132 42412 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | uun132p1 42413 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | anabss7p1 42414 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
This would have been named uun221 if the 0th permutation did not exist
in set.mm as anabss7 670. (Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜓 ∧ 𝜑) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
|
Theorem | un10 42415 |
A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ( ( 𝜑 , ⊤ ) ▶ 𝜓 )
⇒ ⊢ ( 𝜑 ▶ 𝜓 ) |
|
Theorem | un01 42416 |
A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ( ( ⊤ , 𝜑 ) ▶ 𝜓 )
⇒ ⊢ ( 𝜑 ▶ 𝜓 ) |
|
Theorem | un2122 42417 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 3-Dec-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uun2131 42418 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | uun2131p1 42419 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜓)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | uunTT1 42420 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((⊤
∧ ⊤ ∧ 𝜑)
→ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | uunTT1p1 42421 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((⊤
∧ 𝜑 ∧ ⊤)
→ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | uunTT1p2 42422 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ ⊤ ∧ ⊤)
→ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | uunT11 42423 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((⊤
∧ 𝜑 ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | uunT11p1 42424 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ ⊤ ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | uunT11p2 42425 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ 𝜑 ∧ ⊤) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | uunT12 42426 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((⊤
∧ 𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uunT12p1 42427 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((⊤
∧ 𝜓 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uunT12p2 42428 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ ⊤ ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uunT12p3 42429 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜓 ∧ ⊤ ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uunT12p4 42430 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uunT12p5 42431 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜓 ∧ 𝜑 ∧ ⊤) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uun111 42432 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | 3anidm12p1 42433 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
3anidm12 1418 denotes the deduction which would have been
named uun112 if
it did not pre-exist in set.mm. This second permutation's name is based
on this pre-existing name. (Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | 3anidm12p2 42434 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜓 ∧ 𝜑 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | uun123 42435 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | uun123p1 42436 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | uun123p2 42437 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | uun123p3 42438 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | uun123p4 42439 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | uun2221 42440 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 30-Dec-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
|
Theorem | uun2221p1 42441 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜑) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
|
Theorem | uun2221p2 42442 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜓 ∧ 𝜑) ∧ 𝜑 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
|
Theorem | 3impdirp1 42443 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
Commuted version of 3impdir 1350. (Contributed by Alan Sare,
4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜒 ∧ 𝜓) ∧ (𝜑 ∧ 𝜓)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
|
Theorem | 3impcombi 42444 |
A 1-hypothesis propositional calculus deduction. (Contributed by Alan
Sare, 25-Sep-2017.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
|
20.36.6 Theorems proved using Virtual
Deduction
|
|
Theorem | trsspwALT 42445 |
Virtual deduction proof of the left-to-right implication of dftr4 5197. A
transitive class is a subset of its power class. This proof corresponds
to the virtual deduction proof of dftr4 5197 without accumulating results.
(Contributed by Alan Sare, 29-Apr-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
|
Theorem | trsspwALT2 42446 |
Virtual deduction proof of trsspwALT 42445. This proof is the same as the
proof of trsspwALT 42445 except each virtual deduction symbol is
replaced by
its non-virtual deduction symbol equivalent. A transitive class is a
subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
|
Theorem | trsspwALT3 42447 |
Short predicate calculus proof of the left-to-right implication of
dftr4 5197. A transitive class is a subset of its power
class. This
proof was constructed by applying Metamath's minimize command to the
proof of trsspwALT2 42446, which is the virtual deduction proof trsspwALT 42445
without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
|
Theorem | sspwtr 42448 |
Virtual deduction proof of the right-to-left implication of dftr4 5197. A
class which is a subclass of its power class is transitive. This proof
corresponds to the virtual deduction proof of sspwtr 42448 without
accumulating results. (Contributed by Alan Sare, 2-May-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
|
Theorem | sspwtrALT 42449 |
Virtual deduction proof of sspwtr 42448. This proof is the same as the
proof of sspwtr 42448 except each virtual deduction symbol is
replaced by
its non-virtual deduction symbol equivalent. A class which is a
subclass of its power class is transitive. (Contributed by Alan Sare,
3-May-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
|
Theorem | sspwtrALT2 42450 |
Short predicate calculus proof of the right-to-left implication of
dftr4 5197. A class which is a subclass of its power
class is transitive.
This proof was constructed by applying Metamath's minimize command to
the proof of sspwtrALT 42449, which is the virtual deduction proof sspwtr 42448
without virtual deductions. (Contributed by Alan Sare, 3-May-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
|
Theorem | pwtrVD 42451 |
Virtual deduction proof of pwtr 5369; see pwtrrVD 42452 for the converse.
(Contributed by Alan Sare, 25-Aug-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (Tr 𝐴 → Tr 𝒫 𝐴) |
|
Theorem | pwtrrVD 42452 |
Virtual deduction proof of pwtr 5369; see pwtrVD 42451 for the converse.
(Contributed by Alan Sare, 25-Aug-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ 𝐴 ∈
V ⇒ ⊢ (Tr 𝒫 𝐴 → Tr 𝐴) |
|
Theorem | suctrALT 42453 |
The successor of a transitive class is transitive. The proof of
https://us.metamath.org/other/completeusersproof/suctrvd.html
is a
Virtual Deduction proof verified by automatically transforming it into
the Metamath proof of suctrALT 42453 using completeusersproof, which is
verified by the Metamath program. The proof of
https://us.metamath.org/other/completeusersproof/suctrro.html 42453 is a
form of the completed proof which preserves the Virtual Deduction
proof's step numbers and their ordering. See suctr 6353 for the original
proof. (Contributed by Alan Sare, 11-Apr-2009.) (Revised by Alan Sare,
12-Jun-2018.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (Tr 𝐴 → Tr suc 𝐴) |
|
Theorem | snssiALTVD 42454 |
Virtual deduction proof of snssiALT 42455. (Contributed by Alan Sare,
11-Sep-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
|
Theorem | snssiALT 42455 |
If a class is an element of another class, then its singleton is a
subclass of that other class. Alternate proof of snssi 4742. This
theorem was automatically generated from snssiALTVD 42454 using a
translation program. (Contributed by Alan Sare, 11-Sep-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
|
Theorem | snsslVD 42456 |
Virtual deduction proof of snssl 42457. (Contributed by Alan Sare,
25-Aug-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ 𝐴 ∈
V ⇒ ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
|
Theorem | snssl 42457 |
If a singleton is a subclass of another class, then the singleton's
element is an element of that other class. This theorem is the
right-to-left implication of the biconditional snss 4720.
The proof of
this theorem was automatically generated from snsslVD 42456 using a tools
command file, translateMWO.cmd, by translating the proof into its
non-virtual deduction form and minimizing it. (Contributed by Alan
Sare, 25-Aug-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ 𝐴 ∈
V ⇒ ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
|
Theorem | snelpwrVD 42458 |
Virtual deduction proof of snelpwi 5361. (Contributed by Alan Sare,
25-Aug-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
|
Theorem | unipwrVD 42459 |
Virtual deduction proof of unipwr 42460. (Contributed by Alan Sare,
25-Aug-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
|
Theorem | unipwr 42460 |
A class is a subclass of the union of its power class. This theorem is
the right-to-left subclass lemma of unipw 5367. The proof of this theorem
was automatically generated from unipwrVD 42459 using a tools command file ,
translateMWO.cmd , by translating the proof into its non-virtual
deduction form and minimizing it. (Contributed by Alan Sare,
25-Aug-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
|
Theorem | sstrALT2VD 42461 |
Virtual deduction proof of sstrALT2 42462. (Contributed by Alan Sare,
11-Sep-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
|
Theorem | sstrALT2 42462 |
Virtual deduction proof of sstr 3930, transitivity of subclasses, Theorem
6 of [Suppes] p. 23. This theorem was
automatically generated from
sstrALT2VD 42461 using the command file
translate_without_overwriting.cmd . It was not minimized because the
automated minimization excluding duplicates generates a minimized proof
which, although not directly containing any duplicates, indirectly
contains a duplicate. That is, the trace back of the minimized proof
contains a duplicate. This is undesirable because some step(s) of the
minimized proof use the proven theorem. (Contributed by Alan Sare,
11-Sep-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
|
Theorem | suctrALT2VD 42463 |
Virtual deduction proof of suctrALT2 42464. (Contributed by Alan Sare,
11-Sep-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (Tr 𝐴 → Tr suc 𝐴) |
|
Theorem | suctrALT2 42464 |
Virtual deduction proof of suctr 6353. The sucessor of a transitive class
is transitive. This proof was generated automatically from the virtual
deduction proof suctrALT2VD 42463 using the tools command file
translate_without_overwriting_minimize_excluding_duplicates.cmd .
(Contributed by Alan Sare, 11-Sep-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (Tr 𝐴 → Tr suc 𝐴) |
|
Theorem | elex2VD 42465* |
Virtual deduction proof of elex2 2819. (Contributed by Alan Sare,
25-Sep-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
|
Theorem | elex22VD 42466* |
Virtual deduction proof of elex22 3455. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
|
Theorem | eqsbc2VD 42467* |
Virtual deduction proof of eqsbc2 3786. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ 𝐶 = 𝐴)) |
|
Theorem | zfregs2VD 42468* |
Virtual deduction proof of zfregs2 9500. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (𝐴 ≠ ∅ → ¬
∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
|
Theorem | tpid3gVD 42469 |
Virtual deduction proof of tpid3g 4709. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
|
Theorem | en3lplem1VD 42470* |
Virtual deduction proof of en3lplem1 9379. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦 ∈ 𝑥))) |
|
Theorem | en3lplem2VD 42471* |
Virtual deduction proof of en3lplem2 9380. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦 ∈ 𝑥))) |
|
Theorem | en3lpVD 42472 |
Virtual deduction proof of en3lp 9381. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) |
|
20.36.7 Theorems proved using Virtual Deduction
with mmj2 assistance
|
|
Theorem | simplbi2VD 42473 |
Virtual deduction proof of simplbi2 501. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
h1:: | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒))
| 3:1,?: e0a 42399 | ⊢ ((𝜓 ∧ 𝜒) → 𝜑)
| qed:3,?: e0a 42399 | ⊢ (𝜓 → (𝜒 → 𝜑))
|
The proof of simplbi2 501 was automatically derived from it.
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 → (𝜒 → 𝜑)) |
|
Theorem | 3ornot23VD 42474 |
Virtual deduction proof of 3ornot23 42136. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) ▶ (¬ 𝜑
∧ ¬ 𝜓) )
| 2:: | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) , (𝜒 ∨ 𝜑
∨ 𝜓) ▶ (𝜒 ∨ 𝜑 ∨ 𝜓) )
| 3:1,?: e1a 42254 | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) ▶ ¬ 𝜑 )
| 4:1,?: e1a 42254 | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) ▶ ¬ 𝜓 )
| 5:3,4,?: e11 42315 | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) ▶ ¬ (𝜑
∨ 𝜓) )
| 6:2,?: e2 42258 | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) , (𝜒 ∨ 𝜑
∨ 𝜓) ▶ (𝜒 ∨ (𝜑 ∨ 𝜓)) )
| 7:5,6,?: e12 42351 | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) , (𝜒 ∨ 𝜑
∨ 𝜓) ▶ 𝜒 )
| 8:7: | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) ▶ ((𝜒
∨ 𝜑 ∨ 𝜓) → 𝜒) )
| qed:8: | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒
∨ 𝜑 ∨ 𝜓) → 𝜒))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒 ∨ 𝜑 ∨ 𝜓) → 𝜒)) |
|
Theorem | orbi1rVD 42475 |
Virtual deduction proof of orbi1r 42137. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜑 ↔ 𝜓) )
| 2:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜑)
▶ (𝜒 ∨ 𝜑) )
| 3:2,?: e2 42258 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜑)
▶ (𝜑 ∨ 𝜒) )
| 4:1,3,?: e12 42351 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜑)
▶ (𝜓 ∨ 𝜒) )
| 5:4,?: e2 42258 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜑)
▶ (𝜒 ∨ 𝜓) )
| 6:5: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒 ∨ 𝜑)
→ (𝜒 ∨ 𝜓)) )
| 7:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜓)
▶ (𝜒 ∨ 𝜓) )
| 8:7,?: e2 42258 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜓)
▶ (𝜓 ∨ 𝜒) )
| 9:1,8,?: e12 42351 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜓)
▶ (𝜑 ∨ 𝜒) )
| 10:9,?: e2 42258 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜓)
▶ (𝜒 ∨ 𝜑) )
| 11:10: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒 ∨ 𝜓)
→ (𝜒 ∨ 𝜑)) )
| 12:6,11,?: e11 42315 | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒
∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) )
| qed:12: | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∨ 𝜑)
↔ (𝜒 ∨ 𝜓)))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) |
|
Theorem | bitr3VD 42476 |
Virtual deduction proof of bitr3 353. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜑
↔ 𝜓) )
| 2:1,?: e1a 42254 | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜓
↔ 𝜑) )
| 3:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜑 ↔ 𝜒)
▶ (𝜑 ↔ 𝜒) )
| 4:3,?: e2 42258 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜑 ↔ 𝜒)
▶ (𝜒 ↔ 𝜑) )
| 5:2,4,?: e12 42351 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜑 ↔ 𝜒)
▶ (𝜓 ↔ 𝜒) )
| 6:5: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜑
↔ 𝜒) → (𝜓 ↔ 𝜒)) )
| qed:6: | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒)
→ (𝜓 ↔ 𝜒)))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) → (𝜓 ↔ 𝜒))) |
|
Theorem | 3orbi123VD 42477 |
Virtual deduction proof of 3orbi123 42138. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧
(𝜏 ↔ 𝜂)) )
| 2:1,?: e1a 42254 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ (𝜑 ↔ 𝜓) )
| 3:1,?: e1a 42254 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ (𝜒 ↔ 𝜃) )
| 4:1,?: e1a 42254 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ (𝜏 ↔ 𝜂) )
| 5:2,3,?: e11 42315 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) )
| 6:5,4,?: e11 42315 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃)
∨ 𝜂)) )
| 7:?: | ⊢ (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ (𝜑
∨ 𝜒 ∨ 𝜏))
| 8:6,7,?: e10 42321 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃)
∨ 𝜂)) )
| 9:?: | ⊢ (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔
(𝜓 ∨ 𝜃 ∨ 𝜂))
| 10:8,9,?: e10 42321 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒
↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) ▶ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨
𝜃 ∨ 𝜂)) )
| qed:10: | ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) → ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃
∨ 𝜂)))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂))) |
|
Theorem | sbc3orgVD 42478 |
Virtual deduction proof of the analogue of sbcor 3770 with three disjuncts.
The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| 2:1,?: e1a 42254 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]((𝜑
∨ 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓)
∨ [𝐴 / 𝑥]𝜒)) )
| 3:: | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑
∨ 𝜓 ∨ 𝜒))
| 32:3: | ⊢ ∀𝑥(((𝜑 ∨ 𝜓) ∨ 𝜒)
↔ (𝜑 ∨ 𝜓 ∨ 𝜒))
| 33:1,32,?: e10 42321 | ⊢ ( 𝐴 ∈ 𝐵 ▶ [𝐴 / 𝑥](((𝜑
∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) )
| 4:1,33,?: e11 42315 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]((𝜑
∨ 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒)) )
| 5:2,4,?: e11 42315 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑
∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)) )
| 6:1,?: e1a 42254 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑
∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) )
| 7:6,?: e1a 42254 | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥](𝜑
∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)
∨ [𝐴 / 𝑥]𝜒)) )
| 8:5,7,?: e11 42315 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑
∨ 𝜓 ∨ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)
∨ [𝐴 / 𝑥]𝜒)) )
| 9:?: | ⊢ ((([𝐴 / 𝑥]𝜑
∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑
∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒))
| 10:8,9,?: e10 42321 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑
∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓
∨ [𝐴 / 𝑥]𝜒)) )
| qed:10: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑
∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓
∨ [𝐴 / 𝑥]𝜒)))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒))) |
|
Theorem | 19.21a3con13vVD 42479* |
Virtual deduction proof of alrim3con13v 42160. The following user's
proof is completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( (𝜑 → ∀𝑥𝜑)
▶ (𝜑 → ∀𝑥𝜑) )
| 2:: | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓 ∧ 𝜑
∧ 𝜒) ▶ (𝜓 ∧ 𝜑 ∧ 𝜒) )
| 3:2,?: e2 42258 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ 𝜓 )
| 4:2,?: e2 42258 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ 𝜑 )
| 5:2,?: e2 42258 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ 𝜒 )
| 6:1,4,?: e12 42351 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ ∀𝑥𝜑 )
| 7:3,?: e2 42258 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ ∀𝑥𝜓 )
| 8:5,?: e2 42258 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ ∀𝑥𝜒 )
| 9:7,6,8,?: e222 42263 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ (∀𝑥𝜓 ∧ ∀𝑥𝜑 ∧ ∀𝑥𝜒) )
| 10:9,?: e2 42258 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒) )
| 11:10:in2 | ⊢ ( (𝜑 → ∀𝑥𝜑) ▶ ((𝜓
∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒)) )
| qed:11:in1 | ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓
∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒)))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒))) |
|
Theorem | exbirVD 42480 |
Virtual deduction proof of exbir 42105. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))
▶ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) )
| 2:: | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ,
(𝜑 ∧ 𝜓) ▶ (𝜑 ∧ 𝜓) )
| 3:: | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ,
(𝜑 ∧ 𝜓), 𝜃 ▶ 𝜃 )
| 5:1,2,?: e12 42351 | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒
↔ 𝜃)), (𝜑 ∧ 𝜓) ▶ (𝜒 ↔ 𝜃) )
| 6:3,5,?: e32 42385 | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒
↔ 𝜃)), (𝜑 ∧ 𝜓), 𝜃 ▶ 𝜒 )
| 7:6: | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒
↔ 𝜃)), (𝜑 ∧ 𝜓) ▶ (𝜃 → 𝜒) )
| 8:7: | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))
▶ ((𝜑 ∧ 𝜓) → (𝜃 → 𝜒)) )
| 9:8,?: e1a 42254 | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒
↔ 𝜃)) ▶ (𝜑 → (𝜓 → (𝜃 → 𝜒))) )
| qed:9: | ⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))
→ (𝜑 → (𝜓 → (𝜃 → 𝜒))))
|
(Contributed by Alan Sare, 13-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) |
|
Theorem | exbiriVD 42481 |
Virtual deduction proof of exbiri 808. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
h1:: | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))
| 2:: | ⊢ ( 𝜑 ▶ 𝜑 )
| 3:: | ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 )
| 4:: | ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜃 )
| 5:2,1,?: e10 42321 | ⊢ ( 𝜑 ▶ (𝜓 → (𝜒 ↔ 𝜃)) )
| 6:3,5,?: e21 42357 | ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 ↔ 𝜃) )
| 7:4,6,?: e32 42385 | ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜒 )
| 8:7: | ⊢ ( 𝜑 , 𝜓 ▶ (𝜃 → 𝜒) )
| 9:8: | ⊢ ( 𝜑 ▶ (𝜓 → (𝜃 → 𝜒)) )
| qed:9: | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒)))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
|
Theorem | rspsbc2VD 42482* |
Virtual deduction proof of rspsbc2 42161. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| 2:: | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 ▶ 𝐶 ∈ 𝐷 )
| 3:: | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 )
| 4:1,3,?: e13 42375 | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ [𝐴 / 𝑥]∀𝑦 ∈ 𝐷𝜑 )
| 5:1,4,?: e13 42375 | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑦 ∈ 𝐷[𝐴 / 𝑥]𝜑 )
| 6:2,5,?: e23 42382 | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ [𝐶 / 𝑦][𝐴 / 𝑥]𝜑 )
| 7:6: | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 ▶ (∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑) )
| 8:7: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝐶 ∈ 𝐷
→ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)) )
| qed:8: | ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷
→ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) |
|
Theorem | 3impexpVD 42483 |
Virtual deduction proof of 3impexp 1357. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ 𝜃) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) )
| 2:: | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒)
↔ ((𝜑 ∧ 𝜓) ∧ 𝜒))
| 3:1,2,?: e10 42321 | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ 𝜃) ▶ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) )
| 4:3,?: e1a 42254 | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ 𝜃) ▶ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) )
| 5:4,?: e1a 42254 | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ 𝜃) ▶ (𝜑 → (𝜓 → (𝜒 → 𝜃))) )
| 6:5: | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)
→ (𝜑 → (𝜓 → (𝜒 → 𝜃))))
| 7:: | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ 𝜃))) ▶ (𝜑 → (𝜓 → (𝜒 → 𝜃))) )
| 8:7,?: e1a 42254 | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ 𝜃))) ▶ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) )
| 9:8,?: e1a 42254 | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ 𝜃))) ▶ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) )
| 10:2,9,?: e01 42318 | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ 𝜃))) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) )
| 11:10: | ⊢ ((𝜑 → (𝜓 → (𝜒
→ 𝜃))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃))
| qed:6,11,?: e00 42395 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒)
→ 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃))))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
|
Theorem | 3impexpbicomVD 42484 |
Virtual deduction proof of 3impexpbicom 42106. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ (𝜃 ↔ 𝜏)) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) )
| 2:: | ⊢ ((𝜃 ↔ 𝜏) ↔ (𝜏
↔ 𝜃))
| 3:1,2,?: e10 42321 | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ (𝜃 ↔ 𝜏)) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) )
| 4:3,?: e1a 42254 | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ (𝜃 ↔ 𝜏)) ▶ (𝜑 → (𝜓 → (𝜒 → (𝜏
↔ 𝜃)))) )
| 5:4: | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒)
→ (𝜃 ↔ 𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏
↔ 𝜃)))))
| 6:: | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ (𝜏 ↔ 𝜃)))) ▶ (𝜑 → (𝜓 → (𝜒 → (𝜏
↔ 𝜃)))) )
| 7:6,?: e1a 42254 | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ (𝜏 ↔ 𝜃)))) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏
↔ 𝜃)) )
| 8:7,2,?: e10 42321 | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ (𝜏 ↔ 𝜃)))) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃
↔ 𝜏)) )
| 9:8: | ⊢ ((𝜑 → (𝜓 → (𝜒
→ (𝜏 ↔ 𝜃)))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃
↔ 𝜏)))
| qed:5,9,?: e00 42395 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒)
→ (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏
↔ 𝜃)))))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) |
|
Theorem | 3impexpbicomiVD 42485 |
Virtual deduction proof of 3impexpbicomi 42107. The following user's proof
is completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
h1:: | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃
↔ 𝜏))
| qed:1,?: e0a 42399 | ⊢ (𝜑 → (𝜓 → (𝜒
→ (𝜏 ↔ 𝜃))))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) |
|
Theorem | sbcoreleleqVD 42486* |
Virtual deduction proof of sbcoreleleq 42162. The following user's proof
is completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| 2:1,?: e1a 42254 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑥 ∈
𝑦 ↔ 𝑥 ∈ 𝐴) )
| 3:1,?: e1a 42254 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑦 ∈
𝑥 ↔ 𝐴 ∈ 𝑥) )
| 4:1,?: e1a 42254 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑥 =
𝑦 ↔ 𝑥 = 𝐴) )
| 5:2,3,4,?: e111 42301 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ((𝑥 ∈ 𝐴
∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥
∨ [𝐴 / 𝑦]𝑥 = 𝑦)) )
| 6:1,?: e1a 42254 | ⊢ ( 𝐴 ∈ 𝐵
▶ ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥
∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) )
| 7:5,6: e11 42315 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦](𝑥
∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴)) )
| qed:7: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦
∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴)))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) |
|
Theorem | hbra2VD 42487* |
Virtual deduction proof of nfra2 3158. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
1:: | ⊢ (∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑 →
∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| 2:: | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔
∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| 3:1,2,?: e00 42395 | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 →
∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| 4:2: | ⊢ ∀𝑦(∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔
∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| 5:4,?: e0a 42399 | ⊢ (∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔
∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| qed:3,5,?: e00 42395 | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 →
∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑)
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
|
Theorem | tratrbVD 42488* |
Virtual deduction proof of tratrb 42163. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)
▶ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)
∧ 𝐵 ∈ 𝐴) )
| 2:1,?: e1a 42254 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ Tr 𝐴 )
| 3:1,?: e1a 42254 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)
▶ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) )
| 4:1,?: e1a 42254 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ 𝐵 ∈ 𝐴 )
| 5:: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) )
| 6:5,?: e2 42258 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ 𝑥 ∈ 𝑦 )
| 7:5,?: e2 42258 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ 𝑦 ∈ 𝐵 )
| 8:2,7,4,?: e121 42283 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ 𝑦 ∈ 𝐴 )
| 9:2,6,8,?: e122 42280 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ 𝑥 ∈ 𝐴 )
| 10:: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵), 𝐵 ∈ 𝑥 ▶ 𝐵 ∈ 𝑥 )
| 11:6,7,10,?: e223 42262 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵), 𝐵 ∈ 𝑥 ▶ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) )
| 12:11: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ (𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)) )
| 13:: | ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵
∧ 𝐵 ∈ 𝑥)
| 14:12,13,?: e20 42354 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ ¬ 𝐵 ∈ 𝑥 )
| 15:: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵 ▶ 𝑥 = 𝐵 )
| 16:7,15,?: e23 42382 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵 ▶ 𝑦 ∈ 𝑥 )
| 17:6,16,?: e23 42382 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵 ▶ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) )
| 18:17: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ (𝑥 = 𝐵 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) )
| 19:: | ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)
| 20:18,19,?: e20 42354 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ ¬ 𝑥 = 𝐵 )
| 21:3,?: e1a 42254 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑦 ∈ 𝐴
∀𝑥 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) )
| 22:21,9,4,?: e121 42283 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥
∨ 𝑥 = 𝑦) )
| 23:22,?: e2 42258 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ [𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) )
| 24:4,23,?: e12 42351 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵) )
| 25:14,20,24,?: e222 42263 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ 𝑥 ∈ 𝐵 )
| 26:25: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ((𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) )
| 27:: | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦
∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨
𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| 28:27,?: e0a 42399 | ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)
→ ∀𝑦(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥
∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴))
| 29:28,26: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)
▶ ∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) )
| 30:: | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦
∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑥∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦
∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| 31:30,?: e0a 42399 | ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑥(Tr 𝐴
∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴))
| 32:31,29: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑥
∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) )
| 33:32,?: e1a 42254 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ Tr 𝐵 )
| qed:33: | ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵)
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵) |
|
Theorem | al2imVD 42489 |
Virtual deduction proof of al2im 1817. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒))
▶ ∀𝑥(𝜑 → (𝜓 → 𝜒)) )
| 2:1,?: e1a 42254 | ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒))
▶ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒)) )
| 3:: | ⊢ (∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓
→ ∀𝑥𝜒))
| 4:2,3,?: e10 42321 | ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒))
▶ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) )
| qed:4: | ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒))
→ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) |
|
Theorem | syl5impVD 42490 |
Virtual deduction proof of syl5imp 42139. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
1:: | ⊢ ( (𝜑 → (𝜓 → 𝜒)) ▶ (𝜑
→ (𝜓 → 𝜒)) )
| 2:1,?: e1a 42254 | ⊢ ( (𝜑 → (𝜓 → 𝜒)) ▶ (𝜓
→ (𝜑 → 𝜒)) )
| 3:: | ⊢ ( (𝜑 → (𝜓 → 𝜒)) , (𝜃
→ 𝜓) ▶ (𝜃 → 𝜓) )
| 4:3,2,?: e21 42357 | ⊢ ( (𝜑 → (𝜓 → 𝜒)) , (𝜃
→ 𝜓) ▶ (𝜃 → (𝜑 → 𝜒)) )
| 5:4,?: e2 42258 | ⊢ ( (𝜑 → (𝜓 → 𝜒)) , (𝜃
→ 𝜓) ▶ (𝜑 → (𝜃 → 𝜒)) )
| 6:5: | ⊢ ( (𝜑 → (𝜓 → 𝜒)) ▶ ((𝜃
→ 𝜓) → (𝜑 → (𝜃 → 𝜒))) )
| qed:6: | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃
→ 𝜓) → (𝜑 → (𝜃 → 𝜒))))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜓) → (𝜑 → (𝜃 → 𝜒)))) |
|
Theorem | idiVD 42491 |
Virtual deduction proof of idiALT 42104. The following user's
proof is completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
h1:: | ⊢ 𝜑
| qed:1,?: e0a 42399 | ⊢ 𝜑
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ 𝜑 ⇒ ⊢ 𝜑 |
|
Theorem | ancomstVD 42492 |
Closed form of ancoms 459. The following user's proof is completed by
invoking mmj2's unify command and using mmj2's StepSelector to pick all
remaining steps of the Metamath proof.
1:: | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑))
| qed:1,?: e0a 42399 | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓
∧ 𝜑) → 𝜒))
|
The proof of ancomst 465 is derived automatically from it.
(Contributed by
Alan Sare, 25-Dec-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
|
Theorem | ssralv2VD 42493* |
Quantification restricted to a subclass for two quantifiers. ssralv 3988
for two quantifiers. The following User's Proof is a Virtual Deduction
proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. ssralv2 42158 is ssralv2VD 42493 without
virtual deductions and was automatically derived from ssralv2VD 42493.
1:: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ▶ (𝐴 ⊆ 𝐵
∧ 𝐶 ⊆ 𝐷) )
| 2:: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 )
| 3:1: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ▶ 𝐴 ⊆ 𝐵 )
| 4:3,2: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐷𝜑 )
| 5:4: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷𝜑) )
| 6:5: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷𝜑) )
| 7:: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 )
| 8:7,6: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴 ▶ ∀𝑦 ∈ 𝐷𝜑 )
| 9:1: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ▶ 𝐶 ⊆ 𝐷 )
| 10:9,8: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴 ▶ ∀𝑦 ∈ 𝐶𝜑 )
| 11:10: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶𝜑) )
| 12:: | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)
→ ∀𝑥(𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷))
| 13:: | ⊢ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑
→ ∀𝑥∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑)
| 14:12,13,11: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶𝜑) )
| 15:14: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑 )
| 16:15: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)
▶ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑) )
| qed:16: | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)
→ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑))
|
(Contributed by Alan Sare, 10-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
|
Theorem | ordelordALTVD 42494 |
An element of an ordinal class is ordinal. Proposition 7.6 of
[TakeutiZaring] p. 36. This is an alternate proof of ordelord 6292 using
the Axiom of Regularity indirectly through dford2 9387. dford2 is a
weaker definition of ordinal number. Given the Axiom of Regularity, it
need not be assumed that E Fr 𝐴 because this is inferred by the
Axiom of Regularity. The following User's Proof is a Virtual Deduction
proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. ordelordALT 42164 is ordelordALTVD 42494
without virtual deductions and was automatically derived from
ordelordALTVD 42494 using the tools program
translate..without..overwriting.cmd and the Metamath program "MM-PA>
MINIMIZE_WITH *" command.
1:: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ (Ord 𝐴
∧ 𝐵 ∈ 𝐴) )
| 2:1: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ Ord 𝐴 )
| 3:1: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ 𝐵 ∈ 𝐴 )
| 4:2: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ Tr 𝐴 )
| 5:2: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) )
| 6:4,3: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ 𝐵 ⊆ 𝐴 )
| 7:6,6,5: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐵(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) )
| 8:: | ⊢ ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)
↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| 9:8: | ⊢ ∀𝑦((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)
↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| 10:9: | ⊢ ∀𝑦 ∈ 𝐴((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦
∨ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| 11:10: | ⊢ (∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦
∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| 12:11: | ⊢ ∀𝑥(∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦
∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| 13:12: | ⊢ ∀𝑥 ∈ 𝐴(∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦
∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| 14:13: | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦
∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥
∨ 𝑥 = 𝑦))
| 15:14,5: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) )
| 16:4,15,3: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ Tr 𝐵 )
| 17:16,7: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ Ord 𝐵 )
| qed:17: | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵)
|
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
|
Theorem | equncomVD 42495 |
If a class equals the union of two other classes, then it equals the union
of those two classes commuted. The following User's Proof is a Virtual
Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. equncom 4089 is equncomVD 42495 without
virtual deductions and was automatically derived from equncomVD 42495.
1:: | ⊢ ( 𝐴 = (𝐵 ∪ 𝐶) ▶ 𝐴 = (𝐵 ∪ 𝐶) )
| 2:: | ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵)
| 3:1,2: | ⊢ ( 𝐴 = (𝐵 ∪ 𝐶) ▶ 𝐴 = (𝐶 ∪ 𝐵) )
| 4:3: | ⊢ (𝐴 = (𝐵 ∪ 𝐶) → 𝐴 = (𝐶 ∪ 𝐵))
| 5:: | ⊢ ( 𝐴 = (𝐶 ∪ 𝐵) ▶ 𝐴 = (𝐶 ∪ 𝐵) )
| 6:5,2: | ⊢ ( 𝐴 = (𝐶 ∪ 𝐵) ▶ 𝐴 = (𝐵 ∪ 𝐶) )
| 7:6: | ⊢ (𝐴 = (𝐶 ∪ 𝐵) → 𝐴 = (𝐵 ∪ 𝐶))
| 8:4,7: | ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵))
|
(Contributed by Alan Sare, 17-Feb-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) |
|
Theorem | equncomiVD 42496 |
Inference form of equncom 4089. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. equncomi 4090 is equncomiVD 42496 without
virtual deductions and was automatically derived from equncomiVD 42496.
h1:: | ⊢ 𝐴 = (𝐵 ∪ 𝐶)
| qed:1: | ⊢ 𝐴 = (𝐶 ∪ 𝐵)
|
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
|
Theorem | sucidALTVD 42497 |
A set belongs to its successor. Alternate proof of sucid 6349.
The following User's Proof is a Virtual Deduction proof
completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. sucidALT 42498 is sucidALTVD 42497
without virtual deductions and was automatically derived from
sucidALTVD 42497. This proof illustrates that
completeusersproof.cmd will generate a Metamath proof from any
User's Proof which is "conventional" in the sense that no step
is a virtual deduction, provided that all necessary unification
theorems and transformation deductions are in set.mm.
completeusersproof.cmd automatically converts such a
conventional proof into a Virtual Deduction proof for which each
step happens to be a 0-virtual hypothesis virtual deduction.
The user does not need to search for reference theorem labels or
deduction labels nor does he(she) need to use theorems and
deductions which unify with reference theorems and deductions in
set.mm. All that is necessary is that each theorem or deduction
of the User's Proof unifies with some reference theorem or
deduction in set.mm or is a semantic variation of some theorem
or deduction which unifies with some reference theorem or
deduction in set.mm. The definition of "semantic variation" has
not been precisely defined. If it is obvious that a theorem or
deduction has the same meaning as another theorem or deduction,
then it is a semantic variation of the latter theorem or
deduction. For example, step 4 of the User's Proof is a
semantic variation of the definition (axiom)
suc 𝐴 = (𝐴 ∪ {𝐴}), which unifies with df-suc 6276, a
reference definition (axiom) in set.mm. Also, a theorem or
deduction is said to be a semantic variation of another
theorem or deduction if it is obvious upon cursory inspection
that it has the same meaning as a weaker form of the latter
theorem or deduction. For example, the deduction Ord 𝐴
infers ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) is a
semantic variation of the theorem (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥))), which unifies with
the set.mm reference definition (axiom) dford2 9387.
h1:: | ⊢ 𝐴 ∈ V
| 2:1: | ⊢ 𝐴 ∈ {𝐴}
| 3:2: | ⊢ 𝐴 ∈ ({𝐴} ∪ 𝐴)
| 4:: | ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴)
| qed:3,4: | ⊢ 𝐴 ∈ suc 𝐴
|
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ 𝐴 ∈
V ⇒ ⊢ 𝐴 ∈ suc 𝐴 |
|
Theorem | sucidALT 42498 |
A set belongs to its successor. This proof was automatically derived
from sucidALTVD 42497 using translate_without_overwriting.cmd and
minimizing. (Contributed by Alan Sare, 18-Feb-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ 𝐴 ∈
V ⇒ ⊢ 𝐴 ∈ suc 𝐴 |
|
Theorem | sucidVD 42499 |
A set belongs to its successor. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools
program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sucid 6349 is sucidVD 42499 without virtual deductions and was automatically
derived from sucidVD 42499.
h1:: | ⊢ 𝐴 ∈ V
| 2:1: | ⊢ 𝐴 ∈ {𝐴}
| 3:2: | ⊢ 𝐴 ∈ (𝐴 ∪ {𝐴})
| 4:: | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴})
| qed:3,4: | ⊢ 𝐴 ∈ suc 𝐴
|
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ 𝐴 ∈
V ⇒ ⊢ 𝐴 ∈ suc 𝐴 |
|
Theorem | imbi12VD 42500 |
Implication form of imbi12i 351. The following User's Proof is a Virtual
Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. imbi12 347 is imbi12VD 42500 without virtual
deductions and was automatically derived from imbi12VD 42500.
1:: | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜑 ↔ 𝜓) )
| 2:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ (𝜒 ↔ 𝜃) )
| 3:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑
→ 𝜒) ▶ (𝜑 → 𝜒) )
| 4:1,3: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑
→ 𝜒) ▶ (𝜓 → 𝜒) )
| 5:2,4: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑
→ 𝜒) ▶ (𝜓 → 𝜃) )
| 6:5: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜑 → 𝜒) → (𝜓 → 𝜃)) )
| 7:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓
→ 𝜃) ▶ (𝜓 → 𝜃) )
| 8:1,7: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓
→ 𝜃) ▶ (𝜑 → 𝜃) )
| 9:2,8: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓
→ 𝜃) ▶ (𝜑 → 𝜒) )
| 10:9: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜓 → 𝜃) → (𝜑 → 𝜒)) )
| 11:6,10: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) )
| 12:11: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒 ↔ 𝜃)
→ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) )
| qed:12: | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃)
→ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))))
|
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) |