| Metamath
Proof Explorer Theorem List (p. 425 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | renegneg 42401 | A real number is equal to the negative of its negative. Compare negneg 11531. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) | ||
| Theorem | readdcan2 42402 | Commuted version of readdcan 11407 without ax-mulcom 11191. (Contributed by SN, 21-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | renegid2 42403 | Commuted version of renegid 42363. (Contributed by SN, 4-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + 𝐴) = 0) | ||
| Theorem | remulneg2d 42404 | Product with negative is negative of product. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · (0 −ℝ 𝐵)) = (0 −ℝ (𝐴 · 𝐵))) | ||
| Theorem | sn-it0e0 42405 | Proof of it0e0 12462 without ax-mulcom 11191. Informally, a real number times 0 is 0, and ∃𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11200 and renegid2 42403. (Contributed by SN, 30-Apr-2024.) |
| ⊢ (i · 0) = 0 | ||
| Theorem | sn-negex12 42406* | A combination of cnegex 11414 and cnegex2 11415, this proof takes cnre 11230 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.) (Proof shortened by SN, 4-Jul-2025.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)) | ||
| Theorem | sn-negex 42407* | Proof of cnegex 11414 without ax-mulcom 11191. (Contributed by SN, 30-Apr-2024.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝐴 + 𝑏) = 0) | ||
| Theorem | sn-negex2 42408* | Proof of cnegex2 11415 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝑏 + 𝐴) = 0) | ||
| Theorem | sn-addcand 42409 | addcand 11436 without ax-mulcom 11191. Note how the proof is almost identical to addcan 11417. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | sn-addrid 42410 | addrid 11413 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
| Theorem | sn-addcan2d 42411 | addcan2d 11437 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | reixi 42412 | ixi 11864 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.) |
| ⊢ (i · i) = (0 −ℝ 1) | ||
| Theorem | rei4 42413 | i4 14220 without ax-mulcom 11191. (Contributed by SN, 27-May-2024.) |
| ⊢ ((i · i) · (i · i)) = 1 | ||
| Theorem | sn-addid0 42414 | A number that sums to itself is zero. Compare addid0 11654, readdridaddlidd 42256. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
| Theorem | sn-mul01 42415 | mul01 11412 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | ||
| Theorem | sn-subeu 42416* | negeu 11470 without ax-mulcom 11191 and complex number version of resubeu 42367. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | ||
| Theorem | sn-subcl 42417 | subcl 11479 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | ||
| Theorem | sn-subf 42418 | subf 11482 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.) |
| ⊢ − :(ℂ × ℂ)⟶ℂ | ||
| Theorem | resubeqsub 42419 | Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subresre 42420 | Subtraction restricted to the reals. (Contributed by SN, 5-May-2024.) |
| ⊢ −ℝ = ( − ↾ (ℝ × ℝ)) | ||
| Theorem | addinvcom 42421 | A number commutes with its additive inverse. Compare remulinvcom 42422. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐵 + 𝐴) = 0) | ||
| Theorem | remulinvcom 42422 | A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 11191. (Contributed by SN, 5-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐵 · 𝐴) = 1) | ||
| Theorem | remullid 42423 | Commuted version of ax-1rid 11197 without ax-mulcom 11191. (Contributed by SN, 5-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) | ||
| Theorem | sn-1ticom 42424 | Lemma for sn-mullid 42425 and sn-it1ei 42426. (Contributed by SN, 27-May-2024.) |
| ⊢ (1 · i) = (i · 1) | ||
| Theorem | sn-mullid 42425 | mullid 11232 without ax-mulcom 11191. (Contributed by SN, 27-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
| Theorem | sn-it1ei 42426 | it1ei 42312 without ax-mulcom 11191. (See sn-mullid 42425 for commuted version). (Contributed by SN, 1-Jun-2024.) |
| ⊢ (i · 1) = i | ||
| Theorem | ipiiie0 42427 | The multiplicative inverse of i (per i4 14220) is also its additive inverse. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (i + (i · (i · i))) = 0 | ||
| Theorem | remulcand 42428 | Commuted version of remulcan2d 42255 without ax-mulcom 11191. (Contributed by SN, 21-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | sn-0tie0 42429 | Lemma for sn-mul02 42430. Commuted version of sn-it0e0 42405. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (0 · i) = 0 | ||
| Theorem | sn-mul02 42430 | mul02 11411 without ax-mulcom 11191. See https://github.com/icecream17/Stuff/blob/main/math/0A%3D0.md 11191 for an outline. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | ||
| Theorem | sn-ltaddpos 42431 | ltaddpos 11725 without ax-mulcom 11191. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | ||
| Theorem | sn-ltaddneg 42432 | ltaddneg 11449 without ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵)) | ||
| Theorem | reposdif 42433 | Comparison of two numbers whose difference is positive. Compare posdif 11728. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) | ||
| Theorem | relt0neg1 42434 | Comparison of a real and its negative to zero. Compare lt0neg1 11741. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 −ℝ 𝐴))) | ||
| Theorem | relt0neg2 42435 | Comparison of a real and its negative to zero. Compare lt0neg2 11742. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 −ℝ 𝐴) < 0)) | ||
| Theorem | sn-addlt0d 42436 | The sum of negative numbers is negative. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 𝐵 < 0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < 0) | ||
| Theorem | sn-addgt0d 42437 | The sum of positive numbers is positive. Proof of addgt0d 11810 without ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) | ||
| Theorem | sn-nnne0 42438 | nnne0 12272 without ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | reelznn0nn 42439 | elznn0nn 12600 restated using df-resub 42356. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ (0 −ℝ 𝑁) ∈ ℕ))) | ||
| Theorem | nn0addcom 42440 | Addition is commutative for nonnegative integers. Proven without ax-mulcom 11191. (Contributed by SN, 1-Feb-2025.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | zaddcomlem 42441 | Lemma for zaddcom 42442. (Contributed by SN, 1-Feb-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | zaddcom 42442 | Addition is commutative for integers. Proven without ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | renegmulnnass 42443 | Move multiplication by a natural number inside and outside negation. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((0 −ℝ 𝐴) · 𝑁) = (0 −ℝ (𝐴 · 𝑁))) | ||
| Theorem | nn0mulcom 42444 | Multiplication is commutative for nonnegative integers. Proven without ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | zmulcomlem 42445 | Lemma for zmulcom 42446. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | zmulcom 42446 | Multiplication is commutative for integers. Proven without ax-mulcom 11191. From this result and grpcominv1 42478, we can show that rationals commute under multiplication without using ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | mulgt0con1dlem 42447 | Lemma for mulgt0con1d 42448. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) & ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) ⇒ ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) | ||
| Theorem | mulgt0con1d 42448 | Counterpart to mulgt0con2d 42449, though not a lemma of anything. This is the first use of ax-pre-mulgt0 11204. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐴 < 0) | ||
| Theorem | mulgt0con2d 42449 | Lemma for mulgt0b2d 42450 and contrapositive of mulgt0 11310. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐵 < 0) | ||
| Theorem | mulgt0b2d 42450 | Biconditional, deductive form of mulgt0 11310. The second factor is positive iff the product is. Note that the commuted form cannot be proven since resubdi 42386 does not have a commuted form. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵))) | ||
| Theorem | sn-ltmul2d 42451 | ltmul2d 13091 without ax-mulcom 11191. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐶) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵)) | ||
| Theorem | sn-ltmulgt11d 42452 | ltmulgt11d 13084 without ax-mulcom 11191. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (1 < 𝐴 ↔ 𝐵 < (𝐵 · 𝐴))) | ||
| Theorem | sn-0lt1 42453 | 0lt1 11757 without ax-mulcom 11191. (Contributed by SN, 13-Feb-2024.) |
| ⊢ 0 < 1 | ||
| Theorem | sn-ltp1 42454 | ltp1 12079 without ax-mulcom 11191. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | ||
| Theorem | sn-mulgt1d 42455 | mulgt1d 12176 without ax-mulcom 11191. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 1 < 𝐵) ⇒ ⊢ (𝜑 → 1 < (𝐴 · 𝐵)) | ||
| Theorem | reneg1lt0 42456 | Lemma for sn-inelr 42457. (Contributed by SN, 1-Jun-2024.) |
| ⊢ (0 −ℝ 1) < 0 | ||
| Theorem | sn-inelr 42457 | inelr 12228 without ax-mulcom 11191. (Contributed by SN, 1-Jun-2024.) |
| ⊢ ¬ i ∈ ℝ | ||
| Theorem | sn-itrere 42458 | i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.) |
| ⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0)) | ||
| Theorem | sn-retire 42459 | Commuted version of sn-itrere 42458. (Contributed by SN, 27-Jun-2024.) |
| ⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0)) | ||
| Theorem | cnreeu 42460 | The reals in the expression given by cnre 11230 uniquely define a complex number. (Contributed by SN, 27-Jun-2024.) |
| ⊢ (𝜑 → 𝑟 ∈ ℝ) & ⊢ (𝜑 → 𝑠 ∈ ℝ) & ⊢ (𝜑 → 𝑡 ∈ ℝ) & ⊢ (𝜑 → 𝑢 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡 ∧ 𝑠 = 𝑢))) | ||
| Theorem | sn-sup2 42461* | sup2 12196 with exactly the same proof except for using sn-ltp1 42454 instead of ltp1 12079, saving ax-mulcom 11191. (Contributed by SN, 26-Jun-2024.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | sn-sup3d 42462* | sup3 12197 without ax-mulcom 11191, proven trivially from sn-sup2 42461. (Contributed by SN, 29-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | sn-suprcld 42463* | suprcld 12203 without ax-mulcom 11191, proven trivially from sn-sup3d 42462. (Contributed by SN, 29-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) | ||
| Theorem | sn-suprubd 42464* | suprubd 12202 without ax-mulcom 11191, proven trivially from sn-suprcld 42463. (Contributed by SN, 29-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | sn-base0 42465 | Avoid axioms in base0 17231 by using the discouraged df-base 17227. This kind of axiom save is probably not worth it. (Contributed by SN, 16-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∅ = (Base‘∅) | ||
| Theorem | nelsubginvcld 42466 | The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ∈ (𝐵 ∖ 𝑆)) | ||
| Theorem | nelsubgcld 42467 | A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) | ||
| Theorem | nelsubgsubcld 42468 | A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐵 ∖ 𝑆)) | ||
| Theorem | rnasclg 42469 | The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 })) | ||
| Theorem | frlmfielbas 42470 | The vectors of a finite free module are the functions from 𝐼 to 𝑁. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑋 ∈ 𝐵 ↔ 𝑋:𝐼⟶𝑁)) | ||
| Theorem | frlmfzwrd 42471 | A vector of a module with indices from 0 to 𝑁 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) | ||
| Theorem | frlmfzowrd 42472 | A vector of a module with indices from 0 to 𝑁 − 1 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) | ||
| Theorem | frlmfzolen 42473 | The dimension of a vector of a module with indices from 0 to 𝑁 − 1. (Contributed by SN, 1-Sep-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (♯‘𝑋) = 𝑁) | ||
| Theorem | frlmfzowrdb 42474 | The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) | ||
| Theorem | frlmfzoccat 42475 | The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) & ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) & ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ 𝐷 = (Base‘𝑌) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑈 ∈ 𝐶) & ⊢ (𝜑 → 𝑉 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵) | ||
| Theorem | frlmvscadiccat 42476 | Scalar multiplication distributes over concatenation. (Contributed by SN, 6-Sep-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) & ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) & ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ 𝐷 = (Base‘𝑌) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑈 ∈ 𝐶) & ⊢ (𝜑 → 𝑉 ∈ 𝐷) & ⊢ 𝑂 = ( ·𝑠 ‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝑋) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴𝑂(𝑈 ++ 𝑉)) = ((𝐴 ∙ 𝑈) ++ (𝐴 · 𝑉))) | ||
| Theorem | grpasscan2d 42477 | An associative cancellation law for groups. (Contributed by SN, 29-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = 𝑋) | ||
| Theorem | grpcominv1 42478 | If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) ⇒ ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) | ||
| Theorem | grpcominv2 42479 | If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) ⇒ ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) | ||
| Theorem | finsubmsubg 42480 | A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid ℕ0 of the group (ℤ, + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid (ℕ0 ∖ {1}) of the group (ℤ, + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by (ℕ0 ∖ {1}) is ℤ, not (ℤ ∖ {1, -1}). (Contributed by SN, 31-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | ||
| Theorem | opprmndb 42481 | A class is a monoid if and only if its opposite (ring) is a monoid. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) | ||
| Theorem | opprgrpb 42482 | A class is a group if and only if its opposite (ring) is a group. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) | ||
| Theorem | opprablb 42483 | A class is an Abelian group if and only if its opposite (ring) is an Abelian group. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Abel ↔ 𝑂 ∈ Abel) | ||
| Theorem | imacrhmcl 42484 | The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025.) |
| ⊢ 𝐶 = (𝑁 ↾s (𝐹 “ 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ (𝑀 RingHom 𝑁)) & ⊢ (𝜑 → 𝑀 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑀)) ⇒ ⊢ (𝜑 → 𝐶 ∈ CRing) | ||
| Theorem | rimrcl1 42485 | Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑅 ∈ Ring) | ||
| Theorem | rimrcl2 42486 | Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring) | ||
| Theorem | rimcnv 42487 | The converse of a ring isomorphism is a ring isomorphism. (Contributed by SN, 10-Jan-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → ◡𝐹 ∈ (𝑆 RingIso 𝑅)) | ||
| Theorem | rimco 42488 | The composition of ring isomorphisms is a ring isomorphism. (Contributed by SN, 17-Jan-2025.) |
| ⊢ ((𝐹 ∈ (𝑆 RingIso 𝑇) ∧ 𝐺 ∈ (𝑅 RingIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 RingIso 𝑇)) | ||
| Theorem | ricsym 42489 | Ring isomorphism is symmetric. (Contributed by SN, 10-Jan-2025.) |
| ⊢ (𝑅 ≃𝑟 𝑆 → 𝑆 ≃𝑟 𝑅) | ||
| Theorem | rictr 42490 | Ring isomorphism is transitive. (Contributed by SN, 17-Jan-2025.) |
| ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑆 ≃𝑟 𝑇) → 𝑅 ≃𝑟 𝑇) | ||
| Theorem | riccrng1 42491 | Ring isomorphism preserves (multiplicative) commutativity. (Contributed by SN, 10-Jan-2025.) |
| ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) | ||
| Theorem | riccrng 42492 | A ring is commutative if and only if an isomorphic ring is commutative. (Contributed by SN, 10-Jan-2025.) |
| ⊢ (𝑅 ≃𝑟 𝑆 → (𝑅 ∈ CRing ↔ 𝑆 ∈ CRing)) | ||
| Theorem | domnexpgn0cl 42493 | In a domain, a (nonnegative) power of a nonzero element is nonzero. (Contributed by SN, 6-Jul-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐵 ∖ { 0 })) | ||
| Theorem | drnginvrn0d 42494 | A multiplicative inverse in a division ring is nonzero. (recne0d 12009 analog). (Contributed by SN, 14-Aug-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ≠ 0 ) | ||
| Theorem | drngmullcan 42495 | Cancellation of a nonzero factor on the left for multiplication. (mulcanad 11870 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ≠ 0 ) & ⊢ (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | drngmulrcan 42496 | Cancellation of a nonzero factor on the right for multiplication. (mulcan2ad 11871 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ≠ 0 ) & ⊢ (𝜑 → (𝑋 · 𝑍) = (𝑌 · 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | drnginvmuld 42497 | Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼‘𝑌) · (𝐼‘𝑋))) | ||
| Theorem | ricdrng1 42498 | A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025.) |
| ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ DivRing) → 𝑆 ∈ DivRing) | ||
| Theorem | ricdrng 42499 | A ring is a division ring if and only if an isomorphic ring is a division ring. (Contributed by SN, 18-Feb-2025.) |
| ⊢ (𝑅 ≃𝑟 𝑆 → (𝑅 ∈ DivRing ↔ 𝑆 ∈ DivRing)) | ||
| Theorem | ricfld 42500 | A ring is a field if and only if an isomorphic ring is a field. (Contributed by SN, 18-Feb-2025.) |
| ⊢ (𝑅 ≃𝑟 𝑆 → (𝑅 ∈ Field ↔ 𝑆 ∈ Field)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |