![]() |
Metamath
Proof Explorer Theorem List (p. 425 of 485) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30800) |
![]() (30801-32323) |
![]() (32324-48424) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cpell14qr 42401 | Extend class notation to include the class of positive Pell solutions. |
class Pell14QR | ||
Syntax | cpellfund 42402 | Extend class notation to include the Pell-equation fundamental solution function. |
class PellFund | ||
Definition | df-squarenn 42403 | Define the set of square positive integers. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ◻NN = {𝑥 ∈ ℕ ∣ (√‘𝑥) ∈ ℚ} | ||
Definition | df-pell1qr 42404* | Define the solutions of a Pell equation in the first quadrant. To avoid pair pain, we represent this via the canonical embedding into the reals. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ Pell1QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
Definition | df-pell14qr 42405* | Define the positive solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ Pell14QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
Definition | df-pell1234qr 42406* | Define the general solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ Pell1234QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
Definition | df-pellfund 42407* | A function mapping Pell discriminants to the corresponding fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
⊢ PellFund = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < )) | ||
Theorem | pell1qrval 42408* | Value of the set of first-quadrant Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
Theorem | elpell1qr 42409* | Membership in a first-quadrant Pell solution set. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
Theorem | pell14qrval 42410* | Value of the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
Theorem | elpell14qr 42411* | Membership in the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
Theorem | pell1234qrval 42412* | Value of the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
Theorem | elpell1234qr 42413* | Membership in the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
Theorem | pell1234qrre 42414 | General Pell solutions are (coded as) real numbers. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) | ||
Theorem | pell1234qrne0 42415 | No solution to a Pell equation is zero. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0) | ||
Theorem | pell1234qrreccl 42416 | General solutions of the Pell equation are closed under reciprocals. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷)) | ||
Theorem | pell1234qrmulcl 42417 | General solutions of the Pell equation are closed under multiplication. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷)) | ||
Theorem | pell14qrss1234 42418 | A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) | ||
Theorem | pell14qrre 42419 | A positive Pell solution is a real number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ) | ||
Theorem | pell14qrne0 42420 | A positive Pell solution is a nonzero number. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ≠ 0) | ||
Theorem | pell14qrgt0 42421 | A positive Pell solution is a positive number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴) | ||
Theorem | pell14qrrp 42422 | A positive Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ+) | ||
Theorem | pell1234qrdich 42423 | A general Pell solution is either a positive solution, or its negation is. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))) | ||
Theorem | elpell14qr2 42424 | A number is a positive Pell solution iff it is positive and a Pell solution, justifying our name choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) | ||
Theorem | pell14qrmulcl 42425 | Positive Pell solutions are closed under multiplication. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell14QR‘𝐷)) | ||
Theorem | pell14qrreccl 42426 | Positive Pell solutions are closed under reciprocal. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 / 𝐴) ∈ (Pell14QR‘𝐷)) | ||
Theorem | pell14qrdivcl 42427 | Positive Pell solutions are closed under division. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐵) ∈ (Pell14QR‘𝐷)) | ||
Theorem | pell14qrexpclnn0 42428 | Lemma for pell14qrexpcl 42429. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ (Pell14QR‘𝐷)) | ||
Theorem | pell14qrexpcl 42429 | Positive Pell solutions are closed under integer powers. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℤ) → (𝐴↑𝐵) ∈ (Pell14QR‘𝐷)) | ||
Theorem | pell1qrss14 42430 | First-quadrant Pell solutions are a subset of the positive solutions. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷)) | ||
Theorem | pell14qrdich 42431 | A positive Pell solution is either in the first quadrant, or its reciprocal is. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷))) | ||
Theorem | pell1qrge1 42432 | A Pell solution in the first quadrant is at least 1. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 1 ≤ 𝐴) | ||
Theorem | pell1qr1 42433 | 1 is a Pell solution and in the first quadrant as one. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷)) | ||
Theorem | elpell1qr2 42434 | The first quadrant solutions are precisely the positive Pell solutions which are at least one. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴))) | ||
Theorem | pell1qrgaplem 42435 | Lemma for pell1qrgap 42436. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵))) | ||
Theorem | pell1qrgap 42436 | First-quadrant Pell solutions are bounded away from 1. (This particular bound allows to prove exact values for the fundamental solution later.) (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) | ||
Theorem | pell14qrgap 42437 | Positive Pell solutions are bounded away from 1. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) | ||
Theorem | pell14qrgapw 42438 | Positive Pell solutions are bounded away from 1, with a friendlier bound. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 2 < 𝐴) | ||
Theorem | pellqrexplicit 42439 | Condition for a calculated real to be a Pell solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷)) | ||
Theorem | infmrgelbi 42440* | Any lower bound of a nonempty set of real numbers is less than or equal to its infimum, one-direction version. (Contributed by Stefan O'Rear, 1-Sep-2013.) (Revised by AV, 17-Sep-2020.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥) → 𝐵 ≤ inf(𝐴, ℝ, < )) | ||
Theorem | pellqrex 42441* | There is a nontrivial solution of a Pell equation in the first quadrant. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥) | ||
Theorem | pellfundval 42442* | Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) | ||
Theorem | pellfundre 42443 | The fundamental solution of a Pell equation exists as a real number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) | ||
Theorem | pellfundge 42444 | Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) | ||
Theorem | pellfundgt1 42445 | Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) | ||
Theorem | pellfundlb 42446 | A nontrivial first quadrant solution is at least as large as the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Proof shortened by AV, 15-Sep-2020.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴) | ||
Theorem | pellfundglb 42447* | If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥 ∧ 𝑥 < 𝐴)) | ||
Theorem | pellfundex 42448 |
The fundamental solution as an infimum is itself a solution, showing
that the solution set is discrete.
Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw 42438. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)) | ||
Theorem | pellfund14gap 42449 | There are no solutions between 1 and the fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴 ∧ 𝐴 < (PellFund‘𝐷))) → 𝐴 = 1) | ||
Theorem | pellfundrp 42450 | The fundamental Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+) | ||
Theorem | pellfundne1 42451 | The fundamental Pell solution is never 1. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ≠ 1) | ||
Section should be obsolete because its contents are covered by section "Logarithms to an arbitrary base" now. | ||
Theorem | reglogcl 42452 | General logarithm is a real number. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbcl 26750 instead. |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → ((log‘𝐴) / (log‘𝐵)) ∈ ℝ) | ||
Theorem | reglogltb 42453 | General logarithm preserves "less than". (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logblt 26761 instead. |
⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝐶 ∈ ℝ+ ∧ 1 < 𝐶)) → (𝐴 < 𝐵 ↔ ((log‘𝐴) / (log‘𝐶)) < ((log‘𝐵) / (log‘𝐶)))) | ||
Theorem | reglogleb 42454 | General logarithm preserves ≤. (Contributed by Stefan O'Rear, 19-Oct-2014.) (New usage is discouraged.) Use logbleb 26760 instead. |
⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝐶 ∈ ℝ+ ∧ 1 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ ((log‘𝐴) / (log‘𝐶)) ≤ ((log‘𝐵) / (log‘𝐶)))) | ||
Theorem | reglogmul 42455 | Multiplication law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbmul 26754 instead. |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐴 · 𝐵)) / (log‘𝐶)) = (((log‘𝐴) / (log‘𝐶)) + ((log‘𝐵) / (log‘𝐶)))) | ||
Theorem | reglogexp 42456 | Power law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbzexp 26753 instead. |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐴↑𝑁)) / (log‘𝐶)) = (𝑁 · ((log‘𝐴) / (log‘𝐶)))) | ||
Theorem | reglogbas 42457 | General log of the base is 1. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logbid1 26745 instead. |
⊢ ((𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1) → ((log‘𝐶) / (log‘𝐶)) = 1) | ||
Theorem | reglog1 42458 | General log of 1 is 0. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logb1 26746 instead. |
⊢ ((𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1) → ((log‘1) / (log‘𝐶)) = 0) | ||
Theorem | reglogexpbas 42459 | General log of a power of the base is the exponent. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbexp 26757 instead. |
⊢ ((𝑁 ∈ ℤ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐶↑𝑁)) / (log‘𝐶)) = 𝑁) | ||
Theorem | pellfund14 42460* | Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥)) | ||
Theorem | pellfund14b 42461* | The positive Pell solutions are precisely the integer powers of the fundamental solution. To get the general solution set (which we will not be using), throw in a copy of Z/2Z. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))) | ||
Syntax | crmx 42462 | Extend class notation to include the Robertson-Matiyasevich X sequence. |
class Xrm | ||
Syntax | crmy 42463 | Extend class notation to include the Robertson-Matiyasevich Y sequence. |
class Yrm | ||
Definition | df-rmx 42464* | Define the X sequence as the rational part of some solution of a special Pell equation. See frmx 42476 and rmxyval 42478 for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ Xrm = (𝑎 ∈ (ℤ≥‘2), 𝑛 ∈ ℤ ↦ (1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd ‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) | ||
Definition | df-rmy 42465* | Define the X sequence as the irrational part of some solution of a special Pell equation. See frmy 42477 and rmxyval 42478 for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ Yrm = (𝑎 ∈ (ℤ≥‘2), 𝑛 ∈ ℤ ↦ (2nd ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd ‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) | ||
Theorem | rmxfval 42466* | Value of the X sequence. Not used after rmxyval 42478 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) = (1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) | ||
Theorem | rmyfval 42467* | Value of the Y sequence. Not used after rmxyval 42478 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) = (2nd ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) | ||
Theorem | rmspecsqrtnq 42468 | The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | ||
Theorem | rmspecnonsq 42469 | The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) | ||
Theorem | qirropth 42470 | This lemma implements the concept of "equate rational and irrational parts", used to prove many arithmetical properties of the X and Y sequences. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) | ||
Theorem | rmspecfund 42471 | The base of exponent used to define the X and Y sequences is the fundamental solution of the corresponding Pell equation. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1)))) | ||
Theorem | rmxyelqirr 42472* | The solutions used to construct the X and Y sequences are quadratic irrationals. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by SN, 23-Dec-2024.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ {𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) | ||
Theorem | rmxyelqirrOLD 42473* | Obsolete version of rmxyelqirr 42472 as of 23-Dec-2024. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ {𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) | ||
Theorem | rmxypairf1o 42474* | The function used to extract rational and irrational parts in df-rmx 42464 and df-rmy 42465 in fact achieves a one-to-one mapping from the quadratic irrationals to pairs of integers. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) | ||
Theorem | rmxyelxp 42475* | Lemma for frmx 42476 and frmy 42477. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) ∈ (ℕ0 × ℤ)) | ||
Theorem | frmx 42476 | The X sequence is a nonnegative integer. See rmxnn 42514 for a strengthening. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | ||
Theorem | frmy 42477 | The Y sequence is an integer. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | ||
Theorem | rmxyval 42478 | Main definition of the X and Y sequences. Compare definition 2.3 of [JonesMatijasevic] p. 694. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) | ||
Theorem | rmspecpos 42479 | The discriminant used to define the X and Y sequences is a positive real. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℝ+) | ||
Theorem | rmxycomplete 42480* | The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. This is Metamath 100 proof #39. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)))) | ||
Theorem | rmxynorm 42481 | The X and Y sequences define a solution to the corresponding Pell equation. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1) | ||
Theorem | rmbaserp 42482 | The base of exponentiation for the X and Y sequences is a positive real. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+) | ||
Theorem | rmxyneg 42483 | Negation law for X and Y sequences. JonesMatijasevic is inconsistent on whether the X and Y sequences have domain ℕ0 or ℤ; we use ℤ consistently to avoid the need for a separate subtraction law. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))) | ||
Theorem | rmxyadd 42484 | Addition formula for X and Y sequences. See rmxadd 42490 and rmyadd 42494 for most uses. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) | ||
Theorem | rmxy1 42485 | Value of the X and Y sequences at 1. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1)) | ||
Theorem | rmxy0 42486 | Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) | ||
Theorem | rmxneg 42487 | Negation law (even function) for the X sequence. The method of proof used for the previous four theorems rmxyneg 42483, rmxyadd 42484, rmxy0 42486, and rmxy1 42485 via qirropth 42470 results in two theorems at once, but typical use requires only one, so this group of theorems serves to separate the cases. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁)) | ||
Theorem | rmx0 42488 | Value of X sequence at 0. Part 1 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) = 1) | ||
Theorem | rmx1 42489 | Value of X sequence at 1. Part 2 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 1) = 𝐴) | ||
Theorem | rmxadd 42490 | Addition formula for X sequence. Equation 2.7 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))) | ||
Theorem | rmyneg 42491 | Negation formula for Y sequence (odd function). (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁)) | ||
Theorem | rmy0 42492 | Value of Y sequence at 0. Part 1 of equation 2.12 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) = 0) | ||
Theorem | rmy1 42493 | Value of Y sequence at 1. Part 2 of equation 2.12 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 1) = 1) | ||
Theorem | rmyadd 42494 | Addition formula for Y sequence. Equation 2.8 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))) | ||
Theorem | rmxp1 42495 | Special addition-of-1 formula for X sequence. Part 1 of equation 2.9 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((𝐴 Xrm 𝑁) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) | ||
Theorem | rmyp1 42496 | Special addition of 1 formula for Y sequence. Part 2 of equation 2.9 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = (((𝐴 Yrm 𝑁) · 𝐴) + (𝐴 Xrm 𝑁))) | ||
Theorem | rmxm1 42497 | Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) | ||
Theorem | rmym1 42498 | Subtraction of 1 formula for Y sequence. Part 2 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) | ||
Theorem | rmxluc 42499 | The X sequence is a Lucas (second-order integer recurrence) sequence. Part 3 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑁)) − (𝐴 Xrm (𝑁 − 1)))) | ||
Theorem | rmyluc 42500 | The Y sequence is a Lucas sequence, definable via this second-order recurrence with rmy0 42492 and rmy1 42493. Part 3 of equation 2.12 of [JonesMatijasevic] p. 695. JonesMatijasevic uses this theorem to redefine the X and Y sequences to have domain (ℤ × ℤ), which simplifies some later theorems. It may shorten the derivation to use this as our initial definition. Incidentally, the X sequence satisfies the exact same recurrence. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = ((2 · ((𝐴 Yrm 𝑁) · 𝐴)) − (𝐴 Yrm (𝑁 − 1)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |