| Metamath
Proof Explorer Theorem List (p. 425 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | renegeulem 42401* | Lemma for renegeu 42402 and similar. Remove a change in bound variables from renegeulemv 42400. (Contributed by Steven Nguyen, 28-Jan-2023.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) | ||
| Theorem | renegeu 42402* | Existential uniqueness of real negatives. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Theorem | rernegcl 42403 | Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | ||
| Theorem | renegadd 42404 | Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0)) | ||
| Theorem | renegid 42405 | Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) | ||
| Theorem | reneg0addlid 42406 | Negative zero is a left additive identity. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 0) + 𝐴) = 𝐴) | ||
| Theorem | resubeulem1 42407 | Lemma for resubeu 42409. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) | ||
| Theorem | resubeulem2 42408 | Lemma for resubeu 42409. A value which when added to 𝐴, results in 𝐵. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵))) = 𝐵) | ||
| Theorem | resubeu 42409* | Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) | ||
| Theorem | rersubcl 42410 | Closure for real subtraction. Based on subcl 11356. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) ∈ ℝ) | ||
| Theorem | resubadd 42411 | Relation between real subtraction and addition. Based on subadd 11360. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
| Theorem | resubaddd 42412 | Relationship between subtraction and addition. Based on subaddd 11487. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
| Theorem | resubf 42413 | Real subtraction is an operation on the real numbers. Based on subf 11359. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| ⊢ −ℝ :(ℝ × ℝ)⟶ℝ | ||
| Theorem | repncan2 42414 | Addition and subtraction of equals. Compare pncan2 11364. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐴) = 𝐵) | ||
| Theorem | repncan3 42415 | Addition and subtraction of equals. Based on pncan3 11365. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 −ℝ 𝐴)) = 𝐵) | ||
| Theorem | readdsub 42416 | Law for addition and subtraction. (Contributed by Steven Nguyen, 28-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵)) | ||
| Theorem | reladdrsub 42417 | Move LHS of a sum into RHS of a (real) difference. Version of mvlladdd 11525 with real subtraction. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 −ℝ 𝐴)) | ||
| Theorem | reltsub1 42418 | Subtraction from both sides of 'less than'. Compare ltsub1 11610. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 −ℝ 𝐶) < (𝐵 −ℝ 𝐶))) | ||
| Theorem | reltsubadd2 42419 | 'Less than' relationship between addition and subtraction. Compare ltsubadd2 11585. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) | ||
| Theorem | resubcan2 42420 | Cancellation law for real subtraction. Compare subcan2 11383. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | resubsub4 42421 | Law for double subtraction. Compare subsub4 11391. (Contributed by Steven Nguyen, 14-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) −ℝ 𝐶) = (𝐴 −ℝ (𝐵 + 𝐶))) | ||
| Theorem | rennncan2 42422 | Cancellation law for real subtraction. Compare nnncan2 11395. (Contributed by Steven Nguyen, 14-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) −ℝ (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐵)) | ||
| Theorem | renpncan3 42423 | Cancellation law for real subtraction. Compare npncan3 11396. (Contributed by Steven Nguyen, 28-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) + (𝐶 −ℝ 𝐴)) = (𝐶 −ℝ 𝐵)) | ||
| Theorem | repnpcan 42424 | Cancellation law for addition and real subtraction. Compare pnpcan 11397. (Contributed by Steven Nguyen, 19-May-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ (𝐴 + 𝐶)) = (𝐵 −ℝ 𝐶)) | ||
| Theorem | reppncan 42425 | Cancellation law for mixed addition and real subtraction. Compare ppncan 11400. (Contributed by SN, 3-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + (𝐵 −ℝ 𝐶)) = (𝐴 + 𝐵)) | ||
| Theorem | resubidaddlidlem 42426 | Lemma for resubidaddlid 42427. A special case of npncan 11379. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) ⇒ ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) | ||
| Theorem | resubidaddlid 42427 | Any real number subtracted from itself forms a left additive identity. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 −ℝ 𝐴) + 𝐵) = 𝐵) | ||
| Theorem | resubdi 42428 | Distribution of multiplication over real subtraction. (Contributed by Steven Nguyen, 3-Jun-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · (𝐵 −ℝ 𝐶)) = ((𝐴 · 𝐵) −ℝ (𝐴 · 𝐶))) | ||
| Theorem | re1m1e0m0 42429 | Equality of two left-additive identities. See resubidaddlid 42427. Uses ax-i2m1 11071. (Contributed by SN, 25-Dec-2023.) |
| ⊢ (1 −ℝ 1) = (0 −ℝ 0) | ||
| Theorem | sn-00idlem1 42430 | Lemma for sn-00id 42433. (Contributed by SN, 25-Dec-2023.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · (0 −ℝ 0)) = (𝐴 −ℝ 𝐴)) | ||
| Theorem | sn-00idlem2 42431 | Lemma for sn-00id 42433. (Contributed by SN, 25-Dec-2023.) |
| ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) | ||
| Theorem | sn-00idlem3 42432 | Lemma for sn-00id 42433. (Contributed by SN, 25-Dec-2023.) |
| ⊢ ((0 −ℝ 0) = 1 → (0 + 0) = 0) | ||
| Theorem | sn-00id 42433 | 00id 11285 proven without ax-mulcom 11067 but using ax-1ne0 11072. (Though note that the current version of 00id 11285 can be changed to avoid ax-icn 11062, ax-addcl 11063, ax-mulcl 11065, ax-i2m1 11071, ax-cnre 11076. Most of this is by using 0cnALT3 42285 instead of 0cn 11101). (Contributed by SN, 25-Dec-2023.) (Proof modification is discouraged.) |
| ⊢ (0 + 0) = 0 | ||
| Theorem | re0m0e0 42434 | Real number version of 0m0e0 12237 proven without ax-mulcom 11067. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (0 −ℝ 0) = 0 | ||
| Theorem | readdlid 42435 | Real number version of addlid 11293. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | ||
| Theorem | sn-addlid 42436 | addlid 11293 without ax-mulcom 11067. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | ||
| Theorem | remul02 42437 | Real number version of mul02 11288 proven without ax-mulcom 11067. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) | ||
| Theorem | sn-0ne2 42438 | 0ne2 12324 without ax-mulcom 11067. (Contributed by SN, 23-Jan-2024.) |
| ⊢ 0 ≠ 2 | ||
| Theorem | remul01 42439 | Real number version of mul01 11289 proven without ax-mulcom 11067. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) | ||
| Theorem | sn-remul0ord 42440 | A product is zero iff one of its factors are zero. (Contributed by SN, 24-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | ||
| Theorem | resubid 42441 | Subtraction of a real number from itself (compare subid 11377). (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 −ℝ 𝐴) = 0) | ||
| Theorem | readdrid 42442 | Real number version of addrid 11290 without ax-mulcom 11067. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | ||
| Theorem | resubid1 42443 | Real number version of subid1 11378 without ax-mulcom 11067. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 −ℝ 0) = 𝐴) | ||
| Theorem | renegneg 42444 | A real number is equal to the negative of its negative. Compare negneg 11408. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) | ||
| Theorem | readdcan2 42445 | Commuted version of readdcan 11284 without ax-mulcom 11067. (Contributed by SN, 21-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | renegid2 42446 | Commuted version of renegid 42405. (Contributed by SN, 4-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + 𝐴) = 0) | ||
| Theorem | remulneg2d 42447 | Product with negative is negative of product. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · (0 −ℝ 𝐵)) = (0 −ℝ (𝐴 · 𝐵))) | ||
| Theorem | sn-it0e0 42448 | Proof of it0e0 12341 without ax-mulcom 11067. Informally, a real number times 0 is 0, and ∃𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11076 and renegid2 42446. (Contributed by SN, 30-Apr-2024.) |
| ⊢ (i · 0) = 0 | ||
| Theorem | sn-negex12 42449* | A combination of cnegex 11291 and cnegex2 11292, this proof takes cnre 11106 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.) (Proof shortened by SN, 4-Jul-2025.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)) | ||
| Theorem | sn-negex 42450* | Proof of cnegex 11291 without ax-mulcom 11067. (Contributed by SN, 30-Apr-2024.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝐴 + 𝑏) = 0) | ||
| Theorem | sn-negex2 42451* | Proof of cnegex2 11292 without ax-mulcom 11067. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝑏 + 𝐴) = 0) | ||
| Theorem | sn-addcand 42452 | addcand 11313 without ax-mulcom 11067. Note how the proof is almost identical to addcan 11294. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | sn-addrid 42453 | addrid 11290 without ax-mulcom 11067. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
| Theorem | sn-addcan2d 42454 | addcan2d 11314 without ax-mulcom 11067. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | reixi 42455 | ixi 11743 without ax-mulcom 11067. (Contributed by SN, 5-May-2024.) |
| ⊢ (i · i) = (0 −ℝ 1) | ||
| Theorem | rei4 42456 | i4 14108 without ax-mulcom 11067. (Contributed by SN, 27-May-2024.) |
| ⊢ ((i · i) · (i · i)) = 1 | ||
| Theorem | sn-addid0 42457 | A number that sums to itself is zero. Compare addid0 11533, readdridaddlidd 42290. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
| Theorem | sn-mul01 42458 | mul01 11289 without ax-mulcom 11067. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | ||
| Theorem | sn-subeu 42459* | negeu 11347 without ax-mulcom 11067 and complex number version of resubeu 42409. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | ||
| Theorem | sn-subcl 42460 | subcl 11356 without ax-mulcom 11067. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | ||
| Theorem | sn-subf 42461 | subf 11359 without ax-mulcom 11067. (Contributed by SN, 5-May-2024.) |
| ⊢ − :(ℂ × ℂ)⟶ℂ | ||
| Theorem | resubeqsub 42462 | Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subresre 42463 | Subtraction restricted to the reals. (Contributed by SN, 5-May-2024.) |
| ⊢ −ℝ = ( − ↾ (ℝ × ℝ)) | ||
| Theorem | addinvcom 42464 | A number commutes with its additive inverse. Compare remulinvcom 42465. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐵 + 𝐴) = 0) | ||
| Theorem | remulinvcom 42465 | A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 11067. (Contributed by SN, 5-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐵 · 𝐴) = 1) | ||
| Theorem | remullid 42466 | Commuted version of ax-1rid 11073 without ax-mulcom 11067. (Contributed by SN, 5-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) | ||
| Theorem | sn-1ticom 42467 | Lemma for sn-mullid 42468 and sn-it1ei 42469. (Contributed by SN, 27-May-2024.) |
| ⊢ (1 · i) = (i · 1) | ||
| Theorem | sn-mullid 42468 | mullid 11108 without ax-mulcom 11067. (Contributed by SN, 27-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
| Theorem | sn-it1ei 42469 | it1ei 42348 without ax-mulcom 11067. (See sn-mullid 42468 for commuted version). (Contributed by SN, 1-Jun-2024.) |
| ⊢ (i · 1) = i | ||
| Theorem | ipiiie0 42470 | The multiplicative inverse of i (per i4 14108) is also its additive inverse. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (i + (i · (i · i))) = 0 | ||
| Theorem | remulcand 42471 | Commuted version of remulcan2d 42289 without ax-mulcom 11067. (Contributed by SN, 21-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Syntax | crediv 42472 | Real number division. |
| class /ℝ | ||
| Definition | df-rediv 42473* | Define division between real numbers. This operator saves ax-mulcom 11067 over df-div 11772 in certain situations. (Contributed by SN, 25-Nov-2025.) |
| ⊢ /ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (℩𝑧 ∈ ℝ (𝑦 · 𝑧) = 𝑥)) | ||
| Theorem | redivvald 42474* | Value of real division, which is the (unique) real 𝑥 such that (𝐵 · 𝑥) = 𝐴. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) | ||
| Theorem | rediveud 42475* | Existential uniqueness of real quotients. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) | ||
| Theorem | sn-redivcld 42476 | Closure law for real division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /ℝ 𝐵) ∈ ℝ) | ||
| Theorem | redivmuld 42477 | Relationship between division and multiplication. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 /ℝ 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴)) | ||
| Theorem | redivcan2d 42478 | A cancellation law for division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐵 · (𝐴 /ℝ 𝐵)) = 𝐴) | ||
| Theorem | redivcan3d 42479 | A cancellation law for division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐴) /ℝ 𝐵) = 𝐴) | ||
| Theorem | sn-rereccld 42480 | Closure law for reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (1 /ℝ 𝐴) ∈ ℝ) | ||
| Theorem | rerecid 42481 | Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · (1 /ℝ 𝐴)) = 1) | ||
| Theorem | rerecid2 42482 | Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ((1 /ℝ 𝐴) · 𝐴) = 1) | ||
| Theorem | sn-0tie0 42483 | Lemma for sn-mul02 42484. Commuted version of sn-it0e0 42448. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (0 · i) = 0 | ||
| Theorem | sn-mul02 42484 | mul02 11288 without ax-mulcom 11067. See https://github.com/icecream17/Stuff/blob/main/math/0A%3D0.md 11067 for an outline. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | ||
| Theorem | sn-ltaddpos 42485 | ltaddpos 11604 without ax-mulcom 11067. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | ||
| Theorem | sn-ltaddneg 42486 | ltaddneg 11326 without ax-mulcom 11067. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵)) | ||
| Theorem | reposdif 42487 | Comparison of two numbers whose difference is positive. Compare posdif 11607. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) | ||
| Theorem | relt0neg1 42488 | Comparison of a real and its negative to zero. Compare lt0neg1 11620. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 −ℝ 𝐴))) | ||
| Theorem | relt0neg2 42489 | Comparison of a real and its negative to zero. Compare lt0neg2 11621. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 −ℝ 𝐴) < 0)) | ||
| Theorem | sn-addlt0d 42490 | The sum of negative numbers is negative. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 𝐵 < 0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < 0) | ||
| Theorem | sn-addgt0d 42491 | The sum of positive numbers is positive. Proof of addgt0d 11689 without ax-mulcom 11067. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) | ||
| Theorem | sn-nnne0 42492 | nnne0 12156 without ax-mulcom 11067. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | reelznn0nn 42493 | elznn0nn 12479 restated using df-resub 42398. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ (0 −ℝ 𝑁) ∈ ℕ))) | ||
| Theorem | nn0addcom 42494 | Addition is commutative for nonnegative integers. Proven without ax-mulcom 11067. (Contributed by SN, 1-Feb-2025.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | zaddcomlem 42495 | Lemma for zaddcom 42496. (Contributed by SN, 1-Feb-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | zaddcom 42496 | Addition is commutative for integers. Proven without ax-mulcom 11067. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | renegmulnnass 42497 | Move multiplication by a natural number inside and outside negation. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((0 −ℝ 𝐴) · 𝑁) = (0 −ℝ (𝐴 · 𝑁))) | ||
| Theorem | nn0mulcom 42498 | Multiplication is commutative for nonnegative integers. Proven without ax-mulcom 11067. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | zmulcomlem 42499 | Lemma for zmulcom 42500. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | zmulcom 42500 | Multiplication is commutative for integers. Proven without ax-mulcom 11067. From this result and grpcominv1 42540, we can show that rationals commute under multiplication without using ax-mulcom 11067. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |