HomeHome Metamath Proof Explorer
Theorem List (p. 425 of 497)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30845)
  Hilbert Space Explorer  Hilbert Space Explorer
(30846-32368)
  Users' Mathboxes  Users' Mathboxes
(32369-49617)
 

Theorem List for Metamath Proof Explorer - 42401-42500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrenegneg 42401 A real number is equal to the negative of its negative. Compare negneg 11531. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)
 
Theoremreaddcan2 42402 Commuted version of readdcan 11407 without ax-mulcom 11191. (Contributed by SN, 21-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremrenegid2 42403 Commuted version of renegid 42363. (Contributed by SN, 4-May-2024.)
(𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)
 
Theoremremulneg2d 42404 Product with negative is negative of product. (Contributed by SN, 25-Jan-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 · (0 − 𝐵)) = (0 − (𝐴 · 𝐵)))
 
Theoremsn-it0e0 42405 Proof of it0e0 12462 without ax-mulcom 11191. Informally, a real number times 0 is 0, and 𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11200 and renegid2 42403. (Contributed by SN, 30-Apr-2024.)
(i · 0) = 0
 
Theoremsn-negex12 42406* A combination of cnegex 11414 and cnegex2 11415, this proof takes cnre 11230 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.) (Proof shortened by SN, 4-Jul-2025.)
(𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))
 
Theoremsn-negex 42407* Proof of cnegex 11414 without ax-mulcom 11191. (Contributed by SN, 30-Apr-2024.)
(𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝐴 + 𝑏) = 0)
 
Theoremsn-negex2 42408* Proof of cnegex2 11415 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝑏 + 𝐴) = 0)
 
Theoremsn-addcand 42409 addcand 11436 without ax-mulcom 11191. Note how the proof is almost identical to addcan 11417. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremsn-addrid 42410 addrid 11413 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
 
Theoremsn-addcan2d 42411 addcan2d 11437 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremreixi 42412 ixi 11864 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.)
(i · i) = (0 − 1)
 
Theoremrei4 42413 i4 14220 without ax-mulcom 11191. (Contributed by SN, 27-May-2024.)
((i · i) · (i · i)) = 1
 
Theoremsn-addid0 42414 A number that sums to itself is zero. Compare addid0 11654, readdridaddlidd 42256. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (𝐴 + 𝐴) = 𝐴)       (𝜑𝐴 = 0)
 
Theoremsn-mul01 42415 mul01 11412 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ ℂ → (𝐴 · 0) = 0)
 
Theoremsn-subeu 42416* negeu 11470 without ax-mulcom 11191 and complex number version of resubeu 42367. (Contributed by SN, 5-May-2024.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
 
Theoremsn-subcl 42417 subcl 11479 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
 
Theoremsn-subf 42418 subf 11482 without ax-mulcom 11191. (Contributed by SN, 5-May-2024.)
− :(ℂ × ℂ)⟶ℂ
 
Theoremresubeqsub 42419 Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝐴𝐵))
 
Theoremsubresre 42420 Subtraction restricted to the reals. (Contributed by SN, 5-May-2024.)
= ( − ↾ (ℝ × ℝ))
 
Theoremaddinvcom 42421 A number commutes with its additive inverse. Compare remulinvcom 42422. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴 + 𝐵) = 0)       (𝜑 → (𝐵 + 𝐴) = 0)
 
Theoremremulinvcom 42422 A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 11191. (Contributed by SN, 5-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (𝐴 · 𝐵) = 1)       (𝜑 → (𝐵 · 𝐴) = 1)
 
Theoremremullid 42423 Commuted version of ax-1rid 11197 without ax-mulcom 11191. (Contributed by SN, 5-Feb-2024.)
(𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
 
Theoremsn-1ticom 42424 Lemma for sn-mullid 42425 and sn-it1ei 42426. (Contributed by SN, 27-May-2024.)
(1 · i) = (i · 1)
 
Theoremsn-mullid 42425 mullid 11232 without ax-mulcom 11191. (Contributed by SN, 27-May-2024.)
(𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
 
Theoremsn-it1ei 42426 it1ei 42312 without ax-mulcom 11191. (See sn-mullid 42425 for commuted version). (Contributed by SN, 1-Jun-2024.)
(i · 1) = i
 
Theoremipiiie0 42427 The multiplicative inverse of i (per i4 14220) is also its additive inverse. (Contributed by SN, 30-Jun-2024.)
(i + (i · (i · i))) = 0
 
Theoremremulcand 42428 Commuted version of remulcan2d 42255 without ax-mulcom 11191. (Contributed by SN, 21-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremsn-0tie0 42429 Lemma for sn-mul02 42430. Commuted version of sn-it0e0 42405. (Contributed by SN, 30-Jun-2024.)
(0 · i) = 0
 
Theoremsn-mul02 42430 mul02 11411 without ax-mulcom 11191. See https://github.com/icecream17/Stuff/blob/main/math/0A%3D0.md 11191 for an outline. (Contributed by SN, 30-Jun-2024.)
(𝐴 ∈ ℂ → (0 · 𝐴) = 0)
 
Theoremsn-ltaddpos 42431 ltaddpos 11725 without ax-mulcom 11191. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
 
Theoremsn-ltaddneg 42432 ltaddneg 11449 without ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵))
 
Theoremreposdif 42433 Comparison of two numbers whose difference is positive. Compare posdif 11728. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 𝐴)))
 
Theoremrelt0neg1 42434 Comparison of a real and its negative to zero. Compare lt0neg1 11741. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 − 𝐴)))
 
Theoremrelt0neg2 42435 Comparison of a real and its negative to zero. Compare lt0neg2 11742. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 − 𝐴) < 0))
 
Theoremsn-addlt0d 42436 The sum of negative numbers is negative. (Contributed by SN, 25-Jan-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)    &   (𝜑𝐵 < 0)       (𝜑 → (𝐴 + 𝐵) < 0)
 
Theoremsn-addgt0d 42437 The sum of positive numbers is positive. Proof of addgt0d 11810 without ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → 0 < 𝐵)       (𝜑 → 0 < (𝐴 + 𝐵))
 
Theoremsn-nnne0 42438 nnne0 12272 without ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.)
(𝐴 ∈ ℕ → 𝐴 ≠ 0)
 
Theoremreelznn0nn 42439 elznn0nn 12600 restated using df-resub 42356. (Contributed by SN, 25-Jan-2025.)
(𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ (0 − 𝑁) ∈ ℕ)))
 
Theoremnn0addcom 42440 Addition is commutative for nonnegative integers. Proven without ax-mulcom 11191. (Contributed by SN, 1-Feb-2025.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremzaddcomlem 42441 Lemma for zaddcom 42442. (Contributed by SN, 1-Feb-2025.)
(((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremzaddcom 42442 Addition is commutative for integers. Proven without ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremrenegmulnnass 42443 Move multiplication by a natural number inside and outside negation. (Contributed by SN, 25-Jan-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → ((0 − 𝐴) · 𝑁) = (0 − (𝐴 · 𝑁)))
 
Theoremnn0mulcom 42444 Multiplication is commutative for nonnegative integers. Proven without ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremzmulcomlem 42445 Lemma for zmulcom 42446. (Contributed by SN, 25-Jan-2025.)
(((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremzmulcom 42446 Multiplication is commutative for integers. Proven without ax-mulcom 11191. From this result and grpcominv1 42478, we can show that rationals commute under multiplication without using ax-mulcom 11191. (Contributed by SN, 25-Jan-2025.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremmulgt0con1dlem 42447 Lemma for mulgt0con1d 42448. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (0 < 𝐴 → 0 < 𝐵))    &   (𝜑 → (𝐴 = 0 → 𝐵 = 0))       (𝜑 → (𝐵 < 0 → 𝐴 < 0))
 
Theoremmulgt0con1d 42448 Counterpart to mulgt0con2d 42449, though not a lemma of anything. This is the first use of ax-pre-mulgt0 11204. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐵)    &   (𝜑 → (𝐴 · 𝐵) < 0)       (𝜑𝐴 < 0)
 
Theoremmulgt0con2d 42449 Lemma for mulgt0b2d 42450 and contrapositive of mulgt0 11310. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → (𝐴 · 𝐵) < 0)       (𝜑𝐵 < 0)
 
Theoremmulgt0b2d 42450 Biconditional, deductive form of mulgt0 11310. The second factor is positive iff the product is. Note that the commuted form cannot be proven since resubdi 42386 does not have a commuted form. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))
 
Theoremsn-ltmul2d 42451 ltmul2d 13091 without ax-mulcom 11191. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → 0 < 𝐶)       (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵))
 
Theoremsn-ltmulgt11d 42452 ltmulgt11d 13084 without ax-mulcom 11191. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (1 < 𝐴𝐵 < (𝐵 · 𝐴)))
 
Theoremsn-0lt1 42453 0lt1 11757 without ax-mulcom 11191. (Contributed by SN, 13-Feb-2024.)
0 < 1
 
Theoremsn-ltp1 42454 ltp1 12079 without ax-mulcom 11191. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
 
Theoremsn-mulgt1d 42455 mulgt1d 12176 without ax-mulcom 11191. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑 → 1 < 𝐵)       (𝜑 → 1 < (𝐴 · 𝐵))
 
Theoremreneg1lt0 42456 Lemma for sn-inelr 42457. (Contributed by SN, 1-Jun-2024.)
(0 − 1) < 0
 
Theoremsn-inelr 42457 inelr 12228 without ax-mulcom 11191. (Contributed by SN, 1-Jun-2024.)
¬ i ∈ ℝ
 
Theoremsn-itrere 42458 i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.)
(𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))
 
Theoremsn-retire 42459 Commuted version of sn-itrere 42458. (Contributed by SN, 27-Jun-2024.)
(𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0))
 
Theoremcnreeu 42460 The reals in the expression given by cnre 11230 uniquely define a complex number. (Contributed by SN, 27-Jun-2024.)
(𝜑𝑟 ∈ ℝ)    &   (𝜑𝑠 ∈ ℝ)    &   (𝜑𝑡 ∈ ℝ)    &   (𝜑𝑢 ∈ ℝ)       (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡𝑠 = 𝑢)))
 
Theoremsn-sup2 42461* sup2 12196 with exactly the same proof except for using sn-ltp1 42454 instead of ltp1 12079, saving ax-mulcom 11191. (Contributed by SN, 26-Jun-2024.)
((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremsn-sup3d 42462* sup3 12197 without ax-mulcom 11191, proven trivially from sn-sup2 42461. (Contributed by SN, 29-Jun-2025.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremsn-suprcld 42463* suprcld 12203 without ax-mulcom 11191, proven trivially from sn-sup3d 42462. (Contributed by SN, 29-Jun-2025.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)       (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
 
Theoremsn-suprubd 42464* suprubd 12202 without ax-mulcom 11191, proven trivially from sn-suprcld 42463. (Contributed by SN, 29-Jun-2025.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)    &   (𝜑𝐵𝐴)       (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
 
21.30.6  Structures
 
Theoremsn-base0 42465 Avoid axioms in base0 17231 by using the discouraged df-base 17227. This kind of axiom save is probably not worth it. (Contributed by SN, 16-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
∅ = (Base‘∅)
 
Theoremnelsubginvcld 42466 The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       (𝜑 → (𝑁𝑋) ∈ (𝐵𝑆))
 
Theoremnelsubgcld 42467 A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   (𝜑𝑌𝑆)    &    + = (+g𝐺)       (𝜑 → (𝑋 + 𝑌) ∈ (𝐵𝑆))
 
Theoremnelsubgsubcld 42468 A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   (𝜑𝑌𝑆)    &    = (-g𝐺)       (𝜑 → (𝑋 𝑌) ∈ (𝐵𝑆))
 
Theoremrnasclg 42469 The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.)
𝐴 = (algSc‘𝑊)    &    1 = (1r𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 }))
 
Theoremfrlmfielbas 42470 The vectors of a finite free module are the functions from 𝐼 to 𝑁. (Contributed by SN, 31-Aug-2023.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝑁 = (Base‘𝑅)    &   𝐵 = (Base‘𝐹)       ((𝑅𝑉𝐼 ∈ Fin) → (𝑋𝐵𝑋:𝐼𝑁))
 
Theoremfrlmfzwrd 42471 A vector of a module with indices from 0 to 𝑁 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0...𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       (𝑋𝐵𝑋 ∈ Word 𝑆)
 
Theoremfrlmfzowrd 42472 A vector of a module with indices from 0 to 𝑁 − 1 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       (𝑋𝐵𝑋 ∈ Word 𝑆)
 
Theoremfrlmfzolen 42473 The dimension of a vector of a module with indices from 0 to 𝑁 − 1. (Contributed by SN, 1-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       ((𝑁 ∈ ℕ0𝑋𝐵) → (♯‘𝑋) = 𝑁)
 
Theoremfrlmfzowrdb 42474 The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)))
 
Theoremfrlmfzoccat 42475 The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0..^𝐿))    &   𝑋 = (𝐾 freeLMod (0..^𝑀))    &   𝑌 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝐶 = (Base‘𝑋)    &   𝐷 = (Base‘𝑌)    &   (𝜑𝐾𝑍)    &   (𝜑 → (𝑀 + 𝑁) = 𝐿)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑈𝐶)    &   (𝜑𝑉𝐷)       (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵)
 
Theoremfrlmvscadiccat 42476 Scalar multiplication distributes over concatenation. (Contributed by SN, 6-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝐿))    &   𝑋 = (𝐾 freeLMod (0..^𝑀))    &   𝑌 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝐶 = (Base‘𝑋)    &   𝐷 = (Base‘𝑌)    &   (𝜑𝐾𝑍)    &   (𝜑 → (𝑀 + 𝑁) = 𝐿)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑈𝐶)    &   (𝜑𝑉𝐷)    &   𝑂 = ( ·𝑠𝑊)    &    = ( ·𝑠𝑋)    &    · = ( ·𝑠𝑌)    &   𝑆 = (Base‘𝐾)    &   (𝜑𝐴𝑆)       (𝜑 → (𝐴𝑂(𝑈 ++ 𝑉)) = ((𝐴 𝑈) ++ (𝐴 · 𝑉)))
 
Theoremgrpasscan2d 42477 An associative cancellation law for groups. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
 
Theoremgrpcominv1 42478 If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))       (𝜑 → (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋))
 
Theoremgrpcominv2 42479 If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))       (𝜑 → (𝑌 + (𝑁𝑋)) = ((𝑁𝑋) + 𝑌))
 
Theoremfinsubmsubg 42480 A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid 0 of the group (ℤ, + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid (ℕ0 ∖ {1}) of the group (ℤ, + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by (ℕ0 ∖ {1}) is , not (ℤ ∖ {1, -1}). (Contributed by SN, 31-Jan-2025.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubMnd‘𝐺))    &   (𝜑𝐵 ∈ Fin)       (𝜑𝑆 ∈ (SubGrp‘𝐺))
 
Theoremopprmndb 42481 A class is a monoid if and only if its opposite (ring) is a monoid. (Contributed by SN, 20-Jun-2025.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd)
 
Theoremopprgrpb 42482 A class is a group if and only if its opposite (ring) is a group. (Contributed by SN, 20-Jun-2025.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)
 
Theoremopprablb 42483 A class is an Abelian group if and only if its opposite (ring) is an Abelian group. (Contributed by SN, 20-Jun-2025.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Abel ↔ 𝑂 ∈ Abel)
 
Theoremimacrhmcl 42484 The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025.)
𝐶 = (𝑁s (𝐹𝑆))    &   (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))    &   (𝜑𝑀 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑀))       (𝜑𝐶 ∈ CRing)
 
Theoremrimrcl1 42485 Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑅 ∈ Ring)
 
Theoremrimrcl2 42486 Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring)
 
Theoremrimcnv 42487 The converse of a ring isomorphism is a ring isomorphism. (Contributed by SN, 10-Jan-2025.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑆 RingIso 𝑅))
 
Theoremrimco 42488 The composition of ring isomorphisms is a ring isomorphism. (Contributed by SN, 17-Jan-2025.)
((𝐹 ∈ (𝑆 RingIso 𝑇) ∧ 𝐺 ∈ (𝑅 RingIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 RingIso 𝑇))
 
Theoremricsym 42489 Ring isomorphism is symmetric. (Contributed by SN, 10-Jan-2025.)
(𝑅𝑟 𝑆𝑆𝑟 𝑅)
 
Theoremrictr 42490 Ring isomorphism is transitive. (Contributed by SN, 17-Jan-2025.)
((𝑅𝑟 𝑆𝑆𝑟 𝑇) → 𝑅𝑟 𝑇)
 
Theoremriccrng1 42491 Ring isomorphism preserves (multiplicative) commutativity. (Contributed by SN, 10-Jan-2025.)
((𝑅𝑟 𝑆𝑅 ∈ CRing) → 𝑆 ∈ CRing)
 
Theoremriccrng 42492 A ring is commutative if and only if an isomorphic ring is commutative. (Contributed by SN, 10-Jan-2025.)
(𝑅𝑟 𝑆 → (𝑅 ∈ CRing ↔ 𝑆 ∈ CRing))
 
Theoremdomnexpgn0cl 42493 In a domain, a (nonnegative) power of a nonzero element is nonzero. (Contributed by SN, 6-Jul-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    = (.g‘(mulGrp‘𝑅))    &   (𝜑𝑅 ∈ Domn)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))       (𝜑 → (𝑁 𝑋) ∈ (𝐵 ∖ { 0 }))
 
Theoremdrnginvrn0d 42494 A multiplicative inverse in a division ring is nonzero. (recne0d 12009 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑋0 )       (𝜑 → (𝐼𝑋) ≠ 0 )
 
Theoremdrngmullcan 42495 Cancellation of a nonzero factor on the left for multiplication. (mulcanad 11870 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑍0 )    &   (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌))       (𝜑𝑋 = 𝑌)
 
Theoremdrngmulrcan 42496 Cancellation of a nonzero factor on the right for multiplication. (mulcan2ad 11871 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑍0 )    &   (𝜑 → (𝑋 · 𝑍) = (𝑌 · 𝑍))       (𝜑𝑋 = 𝑌)
 
Theoremdrnginvmuld 42497 Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )       (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼𝑌) · (𝐼𝑋)))
 
Theoremricdrng1 42498 A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025.)
((𝑅𝑟 𝑆𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
 
Theoremricdrng 42499 A ring is a division ring if and only if an isomorphic ring is a division ring. (Contributed by SN, 18-Feb-2025.)
(𝑅𝑟 𝑆 → (𝑅 ∈ DivRing ↔ 𝑆 ∈ DivRing))
 
Theoremricfld 42500 A ring is a field if and only if an isomorphic ring is a field. (Contributed by SN, 18-Feb-2025.)
(𝑅𝑟 𝑆 → (𝑅 ∈ Field ↔ 𝑆 ∈ Field))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49617
  Copyright terms: Public domain < Previous  Next >