![]() |
Metamath
Proof Explorer Theorem List (p. 425 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sn-mul01 42401 | mul01 11469 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.) |
⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | ||
Theorem | sn-subeu 42402* | negeu 11526 without ax-mulcom 11248 and complex number version of resubeu 42353. (Contributed by SN, 5-May-2024.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | ||
Theorem | sn-subcl 42403 | subcl 11535 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | ||
Theorem | sn-subf 42404 | subf 11538 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.) |
⊢ − :(ℂ × ℂ)⟶ℂ | ||
Theorem | resubeqsub 42405 | Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (𝐴 − 𝐵)) | ||
Theorem | subresre 42406 | Subtraction restricted to the reals. (Contributed by SN, 5-May-2024.) |
⊢ −ℝ = ( − ↾ (ℝ × ℝ)) | ||
Theorem | addinvcom 42407 | A number commutes with its additive inverse. Compare remulinvcom 42408. (Contributed by SN, 5-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐵 + 𝐴) = 0) | ||
Theorem | remulinvcom 42408 | A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 11248. (Contributed by SN, 5-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐵 · 𝐴) = 1) | ||
Theorem | remullid 42409 | Commuted version of ax-1rid 11254 without ax-mulcom 11248. (Contributed by SN, 5-Feb-2024.) |
⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) | ||
Theorem | sn-1ticom 42410 | Lemma for sn-mullid 42411 and sn-it1ei 42412. (Contributed by SN, 27-May-2024.) |
⊢ (1 · i) = (i · 1) | ||
Theorem | sn-mullid 42411 | mullid 11289 without ax-mulcom 11248. (Contributed by SN, 27-May-2024.) |
⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
Theorem | sn-it1ei 42412 | it1ei 42305 without ax-mulcom 11248. (See sn-mullid 42411 for commuted version). (Contributed by SN, 1-Jun-2024.) |
⊢ (i · 1) = i | ||
Theorem | ipiiie0 42413 | The multiplicative inverse of i (per i4 14253) is also its additive inverse. (Contributed by SN, 30-Jun-2024.) |
⊢ (i + (i · (i · i))) = 0 | ||
Theorem | remulcand 42414 | Commuted version of remulcan2d 42252 without ax-mulcom 11248. (Contributed by SN, 21-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | sn-0tie0 42415 | Lemma for sn-mul02 42416. Commuted version of sn-it0e0 42391. (Contributed by SN, 30-Jun-2024.) |
⊢ (0 · i) = 0 | ||
Theorem | sn-mul02 42416 | mul02 11468 without ax-mulcom 11248. See https://github.com/icecream17/Stuff/blob/main/math/0A%3D0.md 11248 for an outline. (Contributed by SN, 30-Jun-2024.) |
⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | ||
Theorem | sn-ltaddpos 42417 | ltaddpos 11780 without ax-mulcom 11248. (Contributed by SN, 13-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | ||
Theorem | sn-ltaddneg 42418 | ltaddneg 11505 without ax-mulcom 11248. (Contributed by SN, 25-Jan-2025.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵)) | ||
Theorem | reposdif 42419 | Comparison of two numbers whose difference is positive. Compare posdif 11783. (Contributed by SN, 13-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) | ||
Theorem | relt0neg1 42420 | Comparison of a real and its negative to zero. Compare lt0neg1 11796. (Contributed by SN, 13-Feb-2024.) |
⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 −ℝ 𝐴))) | ||
Theorem | relt0neg2 42421 | Comparison of a real and its negative to zero. Compare lt0neg2 11797. (Contributed by SN, 13-Feb-2024.) |
⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 −ℝ 𝐴) < 0)) | ||
Theorem | sn-addlt0d 42422 | The sum of negative numbers is negative. (Contributed by SN, 25-Jan-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 𝐵 < 0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < 0) | ||
Theorem | sn-addgt0d 42423 | The sum of positive numbers is positive. Proof of addgt0d 11865 without ax-mulcom 11248. (Contributed by SN, 25-Jan-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) | ||
Theorem | sn-nnne0 42424 | nnne0 12327 without ax-mulcom 11248. (Contributed by SN, 25-Jan-2025.) |
⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
Theorem | reelznn0nn 42425 | elznn0nn 12653 restated using df-resub 42342. (Contributed by SN, 25-Jan-2025.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ (0 −ℝ 𝑁) ∈ ℕ))) | ||
Theorem | nn0addcom 42426 | Addition is commutative for nonnegative integers. Proven without ax-mulcom 11248. (Contributed by SN, 1-Feb-2025.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
Theorem | zaddcomlem 42427 | Lemma for zaddcom 42428. (Contributed by SN, 1-Feb-2025.) |
⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
Theorem | zaddcom 42428 | Addition is commutative for integers. Proven without ax-mulcom 11248. (Contributed by SN, 25-Jan-2025.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
Theorem | renegmulnnass 42429 | Move multiplication by a natural number inside and outside negation. (Contributed by SN, 25-Jan-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((0 −ℝ 𝐴) · 𝑁) = (0 −ℝ (𝐴 · 𝑁))) | ||
Theorem | nn0mulcom 42430 | Multiplication is commutative for nonnegative integers. Proven without ax-mulcom 11248. (Contributed by SN, 25-Jan-2025.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | zmulcomlem 42431 | Lemma for zmulcom 42432. (Contributed by SN, 25-Jan-2025.) |
⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | zmulcom 42432 | Multiplication is commutative for integers. Proven without ax-mulcom 11248. From this result and grpcominv1 42463, we can show that rationals commute under multiplication without using ax-mulcom 11248. (Contributed by SN, 25-Jan-2025.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | mulgt0con1dlem 42433 | Lemma for mulgt0con1d 42434. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) & ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) ⇒ ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) | ||
Theorem | mulgt0con1d 42434 | Counterpart to mulgt0con2d 42435, though not a lemma of anything. This is the first use of ax-pre-mulgt0 11261. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐴 < 0) | ||
Theorem | mulgt0con2d 42435 | Lemma for mulgt0b2d 42436 and contrapositive of mulgt0 11367. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐵 < 0) | ||
Theorem | mulgt0b2d 42436 | Biconditional, deductive form of mulgt0 11367. The second factor is positive iff the product is. Note that the commuted form cannot be proven since resubdi 42372 does not have a commuted form. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵))) | ||
Theorem | sn-ltmul2d 42437 | ltmul2d 13141 without ax-mulcom 11248. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐶) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵)) | ||
Theorem | sn-ltmulgt11d 42438 | ltmulgt11d 13134 without ax-mulcom 11248. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (1 < 𝐴 ↔ 𝐵 < (𝐵 · 𝐴))) | ||
Theorem | sn-0lt1 42439 | 0lt1 11812 without ax-mulcom 11248. (Contributed by SN, 13-Feb-2024.) |
⊢ 0 < 1 | ||
Theorem | sn-ltp1 42440 | ltp1 12134 without ax-mulcom 11248. (Contributed by SN, 13-Feb-2024.) |
⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | ||
Theorem | sn-mulgt1d 42441 | mulgt1d 12231 without ax-mulcom 11248. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 1 < 𝐵) ⇒ ⊢ (𝜑 → 1 < (𝐴 · 𝐵)) | ||
Theorem | reneg1lt0 42442 | Lemma for sn-inelr 42443. (Contributed by SN, 1-Jun-2024.) |
⊢ (0 −ℝ 1) < 0 | ||
Theorem | sn-inelr 42443 | inelr 12283 without ax-mulcom 11248. (Contributed by SN, 1-Jun-2024.) |
⊢ ¬ i ∈ ℝ | ||
Theorem | sn-itrere 42444 | i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.) |
⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0)) | ||
Theorem | sn-retire 42445 | Commuted version of sn-itrere 42444. (Contributed by SN, 27-Jun-2024.) |
⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0)) | ||
Theorem | cnreeu 42446 | The reals in the expression given by cnre 11287 uniquely define a complex number. (Contributed by SN, 27-Jun-2024.) |
⊢ (𝜑 → 𝑟 ∈ ℝ) & ⊢ (𝜑 → 𝑠 ∈ ℝ) & ⊢ (𝜑 → 𝑡 ∈ ℝ) & ⊢ (𝜑 → 𝑢 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡 ∧ 𝑠 = 𝑢))) | ||
Theorem | sn-sup2 42447* | sup2 12251 with exactly the same proof except for using sn-ltp1 42440 instead of ltp1 12134, saving ax-mulcom 11248. (Contributed by SN, 26-Jun-2024.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | sn-sup3d 42448* | sup3 12252 without ax-mulcom 11248, proven trivially from sn-sup2 42447. (Contributed by SN, 29-Jun-2025.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | sn-suprcld 42449* | suprcld 12258 without ax-mulcom 11248, proven trivially from sn-sup3d 42448. (Contributed by SN, 29-Jun-2025.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) | ||
Theorem | sn-suprubd 42450* | suprubd 12257 without ax-mulcom 11248, proven trivially from sn-suprcld 42449. (Contributed by SN, 29-Jun-2025.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
Theorem | nelsubginvcld 42451 | The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ∈ (𝐵 ∖ 𝑆)) | ||
Theorem | nelsubgcld 42452 | A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) | ||
Theorem | nelsubgsubcld 42453 | A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐵 ∖ 𝑆)) | ||
Theorem | rnasclg 42454 | The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ 𝐴 = (algSc‘𝑊) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 })) | ||
Theorem | frlmfielbas 42455 | The vectors of a finite free module are the functions from 𝐼 to 𝑁. (Contributed by SN, 31-Aug-2023.) |
⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑋 ∈ 𝐵 ↔ 𝑋:𝐼⟶𝑁)) | ||
Theorem | frlmfzwrd 42456 | A vector of a module with indices from 0 to 𝑁 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) | ||
Theorem | frlmfzowrd 42457 | A vector of a module with indices from 0 to 𝑁 − 1 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) | ||
Theorem | frlmfzolen 42458 | The dimension of a vector of a module with indices from 0 to 𝑁 − 1. (Contributed by SN, 1-Sep-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (♯‘𝑋) = 𝑁) | ||
Theorem | frlmfzowrdb 42459 | The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) | ||
Theorem | frlmfzoccat 42460 | The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) & ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) & ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ 𝐷 = (Base‘𝑌) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑈 ∈ 𝐶) & ⊢ (𝜑 → 𝑉 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵) | ||
Theorem | frlmvscadiccat 42461 | Scalar multiplication distributes over concatenation. (Contributed by SN, 6-Sep-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) & ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) & ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ 𝐷 = (Base‘𝑌) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑈 ∈ 𝐶) & ⊢ (𝜑 → 𝑉 ∈ 𝐷) & ⊢ 𝑂 = ( ·𝑠 ‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝑋) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴𝑂(𝑈 ++ 𝑉)) = ((𝐴 ∙ 𝑈) ++ (𝐴 · 𝑉))) | ||
Theorem | grpasscan2d 42462 | An associative cancellation law for groups. (Contributed by SN, 29-Jan-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = 𝑋) | ||
Theorem | grpcominv1 42463 | If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) ⇒ ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) | ||
Theorem | grpcominv2 42464 | If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) ⇒ ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) | ||
Theorem | finsubmsubg 42465 | A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid ℕ0 of the group (ℤ, + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid (ℕ0 ∖ {1}) of the group (ℤ, + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by (ℕ0 ∖ {1}) is ℤ, not (ℤ ∖ {1, -1}). (Contributed by SN, 31-Jan-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | ||
Theorem | opprmndb 42466 | A class is a monoid if and only if its opposite (ring) is a monoid. (Contributed by SN, 20-Jun-2025.) |
⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) | ||
Theorem | opprgrpb 42467 | A class is a group if and only if its opposite (ring) is a group. (Contributed by SN, 20-Jun-2025.) |
⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) | ||
Theorem | opprablb 42468 | A class is an Abelian group if and only if its opposite (ring) is an Abelian group. (Contributed by SN, 20-Jun-2025.) |
⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Abel ↔ 𝑂 ∈ Abel) | ||
Theorem | imacrhmcl 42469 | The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025.) |
⊢ 𝐶 = (𝑁 ↾s (𝐹 “ 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ (𝑀 RingHom 𝑁)) & ⊢ (𝜑 → 𝑀 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑀)) ⇒ ⊢ (𝜑 → 𝐶 ∈ CRing) | ||
Theorem | rimrcl1 42470 | Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025.) |
⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑅 ∈ Ring) | ||
Theorem | rimrcl2 42471 | Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025.) |
⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring) | ||
Theorem | rimcnv 42472 | The converse of a ring isomorphism is a ring isomorphism. (Contributed by SN, 10-Jan-2025.) |
⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → ◡𝐹 ∈ (𝑆 RingIso 𝑅)) | ||
Theorem | rimco 42473 | The composition of ring isomorphisms is a ring isomorphism. (Contributed by SN, 17-Jan-2025.) |
⊢ ((𝐹 ∈ (𝑆 RingIso 𝑇) ∧ 𝐺 ∈ (𝑅 RingIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 RingIso 𝑇)) | ||
Theorem | ricsym 42474 | Ring isomorphism is symmetric. (Contributed by SN, 10-Jan-2025.) |
⊢ (𝑅 ≃𝑟 𝑆 → 𝑆 ≃𝑟 𝑅) | ||
Theorem | rictr 42475 | Ring isomorphism is transitive. (Contributed by SN, 17-Jan-2025.) |
⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑆 ≃𝑟 𝑇) → 𝑅 ≃𝑟 𝑇) | ||
Theorem | riccrng1 42476 | Ring isomorphism preserves (multiplicative) commutativity. (Contributed by SN, 10-Jan-2025.) |
⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) | ||
Theorem | riccrng 42477 | A ring is commutative if and only if an isomorphic ring is commutative. (Contributed by SN, 10-Jan-2025.) |
⊢ (𝑅 ≃𝑟 𝑆 → (𝑅 ∈ CRing ↔ 𝑆 ∈ CRing)) | ||
Theorem | domnexpgn0cl 42478 | In a domain, a (nonnegative) power of a nonzero element is nonzero. (Contributed by SN, 6-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐵 ∖ { 0 })) | ||
Theorem | drnginvrn0d 42479 | A multiplicative inverse in a division ring is nonzero. (recne0d 12064 analog). (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ≠ 0 ) | ||
Theorem | drngmullcan 42480 | Cancellation of a nonzero factor on the left for multiplication. (mulcanad 11925 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ≠ 0 ) & ⊢ (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | drngmulrcan 42481 | Cancellation of a nonzero factor on the right for multiplication. (mulcan2ad 11926 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ≠ 0 ) & ⊢ (𝜑 → (𝑋 · 𝑍) = (𝑌 · 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | drnginvmuld 42482 | Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼‘𝑌) · (𝐼‘𝑋))) | ||
Theorem | ricdrng1 42483 | A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025.) |
⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ DivRing) → 𝑆 ∈ DivRing) | ||
Theorem | ricdrng 42484 | A ring is a division ring if and only if an isomorphic ring is a division ring. (Contributed by SN, 18-Feb-2025.) |
⊢ (𝑅 ≃𝑟 𝑆 → (𝑅 ∈ DivRing ↔ 𝑆 ∈ DivRing)) | ||
Theorem | ricfld 42485 | A ring is a field if and only if an isomorphic ring is a field. (Contributed by SN, 18-Feb-2025.) |
⊢ (𝑅 ≃𝑟 𝑆 → (𝑅 ∈ Field ↔ 𝑆 ∈ Field)) | ||
Theorem | asclf1 42486* | Two ways of saying the scalar injection is one-to-one. (Contributed by SN, 3-Jul-2025.) |
⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (0g‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ Ring) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → (𝐴:𝐾–1-1→𝐵 ↔ ∀𝑠 ∈ 𝐾 ((𝐴‘𝑠) = 0 → 𝑠 = 𝑁))) | ||
Theorem | abvexp 42487 | Move exponentiation in and out of absolute value. (Contributed by SN, 3-Jul-2025.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐹‘(𝑁 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑁)) | ||
Theorem | fimgmcyclem 42488* | Lemma for fimgmcyc 42489. (Contributed by SN, 7-Jul-2025.) |
⊢ (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ⇒ ⊢ (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) | ||
Theorem | fimgmcyc 42489* | Version of odcl2 19607 for finite magmas: the multiples of an element 𝐴 ∈ 𝐵 are eventually periodic. (Contributed by SN, 3-Jul-2025.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ · = (.g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mgm) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 · 𝐴) = ((𝑜 + 𝑝) · 𝐴)) | ||
Theorem | fidomncyc 42490* | Version of odcl2 19607 for multiplicative groups of finite domains (that is, a finite monoid where nonzero elements are cancellable): one (1) is a multiple of any nonzero element. (Contributed by SN, 3-Jul-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ { 0 })) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 ) | ||
Theorem | fiabv 42491* | In a finite domain (a finite field), the only absolute value is the trivial one (abvtrivg 20856). (Contributed by SN, 3-Jul-2025.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑇 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐴 = {𝑇}) | ||
Theorem | lvecgrp 42492 | A vector space is a group. (Contributed by SN, 28-May-2023.) |
⊢ (𝑊 ∈ LVec → 𝑊 ∈ Grp) | ||
Theorem | lvecring 42493 | The scalar component of a vector space is a ring. (Contributed by SN, 28-May-2023.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → 𝐹 ∈ Ring) | ||
Theorem | frlm0vald 42494 | All coordinates of the zero vector are zero. (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((0g‘𝐹)‘𝐽) = 0 ) | ||
Theorem | frlmsnic 42495* | Given a free module with a singleton as the index set, that is, a free module of one-dimensional vectors, the function that maps each vector to its coordinate is a module isomorphism from that module to its ring of scalars seen as a module. (Contributed by Steven Nguyen, 18-Aug-2023.) |
⊢ 𝑊 = (𝐾 freeLMod {𝐼}) & ⊢ 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) ⇒ ⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾))) | ||
Theorem | uvccl 42496 | A unit vector is a vector. (Contributed by Steven Nguyen, 16-Jul-2023.) |
⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) ∈ 𝐵) | ||
Theorem | uvcn0 42497 | A unit vector is nonzero. (Contributed by Steven Nguyen, 16-Jul-2023.) |
⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑌) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) ≠ 0 ) | ||
Theorem | pwselbasr 42498 | The reverse direction of pwselbasb 17548: a function between the index and base set of a structure is an element of the structure power. (Contributed by SN, 29-Jul-2024.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) & ⊢ (𝜑 → 𝑋:𝐼⟶𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑉) | ||
Theorem | pwsgprod 42499* | Finite products in a power structure are taken componentwise. Compare pwsgsum 20024. (Contributed by SN, 30-Jul-2024.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑀 = (mulGrp‘𝑌) & ⊢ 𝑇 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 1 ) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑇 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
Theorem | psrmnd 42500 | The ring of power series is a monoid. (Contributed by SN, 25-Apr-2025.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝑆 ∈ Mnd) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |