| Metamath
Proof Explorer Theorem List (p. 425 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sn-0ne2 42401 | 0ne2 12395 without ax-mulcom 11139. (Contributed by SN, 23-Jan-2024.) |
| ⊢ 0 ≠ 2 | ||
| Theorem | remul01 42402 | Real number version of mul01 11360 proven without ax-mulcom 11139. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) | ||
| Theorem | sn-remul0ord 42403 | A product is zero iff one of its factors are zero. (Contributed by SN, 24-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | ||
| Theorem | resubid 42404 | Subtraction of a real number from itself (compare subid 11448). (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 −ℝ 𝐴) = 0) | ||
| Theorem | readdrid 42405 | Real number version of addrid 11361 without ax-mulcom 11139. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | ||
| Theorem | resubid1 42406 | Real number version of subid1 11449 without ax-mulcom 11139. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 −ℝ 0) = 𝐴) | ||
| Theorem | renegneg 42407 | A real number is equal to the negative of its negative. Compare negneg 11479. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) | ||
| Theorem | readdcan2 42408 | Commuted version of readdcan 11355 without ax-mulcom 11139. (Contributed by SN, 21-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | renegid2 42409 | Commuted version of renegid 42368. (Contributed by SN, 4-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + 𝐴) = 0) | ||
| Theorem | remulneg2d 42410 | Product with negative is negative of product. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · (0 −ℝ 𝐵)) = (0 −ℝ (𝐴 · 𝐵))) | ||
| Theorem | sn-it0e0 42411 | Proof of it0e0 12412 without ax-mulcom 11139. Informally, a real number times 0 is 0, and ∃𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11148 and renegid2 42409. (Contributed by SN, 30-Apr-2024.) |
| ⊢ (i · 0) = 0 | ||
| Theorem | sn-negex12 42412* | A combination of cnegex 11362 and cnegex2 11363, this proof takes cnre 11178 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.) (Proof shortened by SN, 4-Jul-2025.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)) | ||
| Theorem | sn-negex 42413* | Proof of cnegex 11362 without ax-mulcom 11139. (Contributed by SN, 30-Apr-2024.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝐴 + 𝑏) = 0) | ||
| Theorem | sn-negex2 42414* | Proof of cnegex2 11363 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝑏 + 𝐴) = 0) | ||
| Theorem | sn-addcand 42415 | addcand 11384 without ax-mulcom 11139. Note how the proof is almost identical to addcan 11365. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | sn-addrid 42416 | addrid 11361 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
| Theorem | sn-addcan2d 42417 | addcan2d 11385 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | reixi 42418 | ixi 11814 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.) |
| ⊢ (i · i) = (0 −ℝ 1) | ||
| Theorem | rei4 42419 | i4 14176 without ax-mulcom 11139. (Contributed by SN, 27-May-2024.) |
| ⊢ ((i · i) · (i · i)) = 1 | ||
| Theorem | sn-addid0 42420 | A number that sums to itself is zero. Compare addid0 11604, readdridaddlidd 42253. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
| Theorem | sn-mul01 42421 | mul01 11360 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | ||
| Theorem | sn-subeu 42422* | negeu 11418 without ax-mulcom 11139 and complex number version of resubeu 42372. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | ||
| Theorem | sn-subcl 42423 | subcl 11427 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | ||
| Theorem | sn-subf 42424 | subf 11430 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.) |
| ⊢ − :(ℂ × ℂ)⟶ℂ | ||
| Theorem | resubeqsub 42425 | Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subresre 42426 | Subtraction restricted to the reals. (Contributed by SN, 5-May-2024.) |
| ⊢ −ℝ = ( − ↾ (ℝ × ℝ)) | ||
| Theorem | addinvcom 42427 | A number commutes with its additive inverse. Compare remulinvcom 42428. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐵 + 𝐴) = 0) | ||
| Theorem | remulinvcom 42428 | A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 11139. (Contributed by SN, 5-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐵 · 𝐴) = 1) | ||
| Theorem | remullid 42429 | Commuted version of ax-1rid 11145 without ax-mulcom 11139. (Contributed by SN, 5-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) | ||
| Theorem | sn-1ticom 42430 | Lemma for sn-mullid 42431 and sn-it1ei 42432. (Contributed by SN, 27-May-2024.) |
| ⊢ (1 · i) = (i · 1) | ||
| Theorem | sn-mullid 42431 | mullid 11180 without ax-mulcom 11139. (Contributed by SN, 27-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
| Theorem | sn-it1ei 42432 | it1ei 42311 without ax-mulcom 11139. (See sn-mullid 42431 for commuted version). (Contributed by SN, 1-Jun-2024.) |
| ⊢ (i · 1) = i | ||
| Theorem | ipiiie0 42433 | The multiplicative inverse of i (per i4 14176) is also its additive inverse. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (i + (i · (i · i))) = 0 | ||
| Theorem | remulcand 42434 | Commuted version of remulcan2d 42252 without ax-mulcom 11139. (Contributed by SN, 21-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Syntax | crediv 42435 | Real number division. |
| class /ℝ | ||
| Definition | df-rediv 42436* | Define division between real numbers. This operator saves ax-mulcom 11139 over df-div 11843 in certain situations. (Contributed by SN, 25-Nov-2025.) |
| ⊢ /ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (℩𝑧 ∈ ℝ (𝑦 · 𝑧) = 𝑥)) | ||
| Theorem | redivvald 42437* | Value of real division, which is the (unique) real 𝑥 such that (𝐵 · 𝑥) = 𝐴. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) | ||
| Theorem | rediveud 42438* | Existential uniqueness of real quotients. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) | ||
| Theorem | sn-redivcld 42439 | Closure law for real division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /ℝ 𝐵) ∈ ℝ) | ||
| Theorem | redivmuld 42440 | Relationship between division and multiplication. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 /ℝ 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴)) | ||
| Theorem | redivcan2d 42441 | A cancellation law for division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐵 · (𝐴 /ℝ 𝐵)) = 𝐴) | ||
| Theorem | redivcan3d 42442 | A cancellation law for division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐴) /ℝ 𝐵) = 𝐴) | ||
| Theorem | sn-rereccld 42443 | Closure law for reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (1 /ℝ 𝐴) ∈ ℝ) | ||
| Theorem | rerecid 42444 | Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · (1 /ℝ 𝐴)) = 1) | ||
| Theorem | rerecid2 42445 | Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ((1 /ℝ 𝐴) · 𝐴) = 1) | ||
| Theorem | sn-0tie0 42446 | Lemma for sn-mul02 42447. Commuted version of sn-it0e0 42411. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (0 · i) = 0 | ||
| Theorem | sn-mul02 42447 | mul02 11359 without ax-mulcom 11139. See https://github.com/icecream17/Stuff/blob/main/math/0A%3D0.md 11139 for an outline. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | ||
| Theorem | sn-ltaddpos 42448 | ltaddpos 11675 without ax-mulcom 11139. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | ||
| Theorem | sn-ltaddneg 42449 | ltaddneg 11397 without ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵)) | ||
| Theorem | reposdif 42450 | Comparison of two numbers whose difference is positive. Compare posdif 11678. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) | ||
| Theorem | relt0neg1 42451 | Comparison of a real and its negative to zero. Compare lt0neg1 11691. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 −ℝ 𝐴))) | ||
| Theorem | relt0neg2 42452 | Comparison of a real and its negative to zero. Compare lt0neg2 11692. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 −ℝ 𝐴) < 0)) | ||
| Theorem | sn-addlt0d 42453 | The sum of negative numbers is negative. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 𝐵 < 0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < 0) | ||
| Theorem | sn-addgt0d 42454 | The sum of positive numbers is positive. Proof of addgt0d 11760 without ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) | ||
| Theorem | sn-nnne0 42455 | nnne0 12227 without ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | reelznn0nn 42456 | elznn0nn 12550 restated using df-resub 42361. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ (0 −ℝ 𝑁) ∈ ℕ))) | ||
| Theorem | nn0addcom 42457 | Addition is commutative for nonnegative integers. Proven without ax-mulcom 11139. (Contributed by SN, 1-Feb-2025.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | zaddcomlem 42458 | Lemma for zaddcom 42459. (Contributed by SN, 1-Feb-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | zaddcom 42459 | Addition is commutative for integers. Proven without ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | renegmulnnass 42460 | Move multiplication by a natural number inside and outside negation. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((0 −ℝ 𝐴) · 𝑁) = (0 −ℝ (𝐴 · 𝑁))) | ||
| Theorem | nn0mulcom 42461 | Multiplication is commutative for nonnegative integers. Proven without ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | zmulcomlem 42462 | Lemma for zmulcom 42463. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | zmulcom 42463 | Multiplication is commutative for integers. Proven without ax-mulcom 11139. From this result and grpcominv1 42503, we can show that rationals commute under multiplication without using ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | mulgt0con1dlem 42464 | Lemma for mulgt0con1d 42465. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) & ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) ⇒ ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) | ||
| Theorem | mulgt0con1d 42465 | Counterpart to mulgt0con2d 42466, though not a lemma. This is the first use of ax-pre-mulgt0 11152. One direction of mulgt0b2d 42473. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐴 < 0) | ||
| Theorem | mulgt0con2d 42466 | Lemma for mulgt0b1d 42467 and contrapositive of mulgt0 11258. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐵 < 0) | ||
| Theorem | mulgt0b1d 42467 | Biconditional, deductive form of mulgt0 11258. The second factor is positive iff the product is. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵))) | ||
| Theorem | sn-ltmul2d 42468 | ltmul2d 13044 without ax-mulcom 11139. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐶) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵)) | ||
| Theorem | sn-ltmulgt11d 42469 | ltmulgt11d 13037 without ax-mulcom 11139. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (1 < 𝐴 ↔ 𝐵 < (𝐵 · 𝐴))) | ||
| Theorem | sn-0lt1 42470 | 0lt1 11707 without ax-mulcom 11139. (Contributed by SN, 13-Feb-2024.) |
| ⊢ 0 < 1 | ||
| Theorem | sn-ltp1 42471 | ltp1 12029 without ax-mulcom 11139. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | ||
| Theorem | sn-recgt0d 42472 | The reciprocal of a positive real is positive. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 0 < (1 /ℝ 𝐴)) | ||
| Theorem | mulgt0b2d 42473 | Biconditional, deductive form of mulgt0 11258. The first factor is positive iff the product is. (Contributed by SN, 24-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵))) | ||
| Theorem | sn-mulgt1d 42474 | mulgt1d 12126 without ax-mulcom 11139. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 1 < 𝐵) ⇒ ⊢ (𝜑 → 1 < (𝐴 · 𝐵)) | ||
| Theorem | reneg1lt0 42475 | Negative one is a negative number. (Contributed by SN, 1-Jun-2024.) |
| ⊢ (0 −ℝ 1) < 0 | ||
| Theorem | sn-reclt0d 42476 | The reciprocal of a negative real is negative. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → (1 /ℝ 𝐴) < 0) | ||
| Theorem | mulltgt0d 42477 | Negative times positive is negative. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | ||
| Theorem | mullt0b1d 42478 | When the first term is negative, the second term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0)) | ||
| Theorem | mullt0b2d 42479 | When the second term is negative, the first term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 0) ⇒ ⊢ (𝜑 → (0 < 𝐴 ↔ (𝐴 · 𝐵) < 0)) | ||
| Theorem | sn-mullt0d 42480 | The product of two negative numbers is positive. (Contributed by SN, 1-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 𝐵 < 0) ⇒ ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) | ||
| Theorem | sn-msqgt0d 42481 | A nonzero square is positive. (Contributed by SN, 1-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → 0 < (𝐴 · 𝐴)) | ||
| Theorem | sn-inelr 42482 | inelr 12183 without ax-mulcom 11139. (Contributed by SN, 1-Jun-2024.) |
| ⊢ ¬ i ∈ ℝ | ||
| Theorem | sn-itrere 42483 | i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.) |
| ⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0)) | ||
| Theorem | sn-retire 42484 | Commuted version of sn-itrere 42483. (Contributed by SN, 27-Jun-2024.) |
| ⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0)) | ||
| Theorem | cnreeu 42485 | The reals in the expression given by cnre 11178 uniquely define a complex number. (Contributed by SN, 27-Jun-2024.) |
| ⊢ (𝜑 → 𝑟 ∈ ℝ) & ⊢ (𝜑 → 𝑠 ∈ ℝ) & ⊢ (𝜑 → 𝑡 ∈ ℝ) & ⊢ (𝜑 → 𝑢 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡 ∧ 𝑠 = 𝑢))) | ||
| Theorem | sn-sup2 42486* | sup2 12146 with exactly the same proof except for using sn-ltp1 42471 instead of ltp1 12029, saving ax-mulcom 11139. (Contributed by SN, 26-Jun-2024.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | sn-sup3d 42487* | sup3 12147 without ax-mulcom 11139, proven trivially from sn-sup2 42486. (Contributed by SN, 29-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | sn-suprcld 42488* | suprcld 12153 without ax-mulcom 11139, proven trivially from sn-sup3d 42487. (Contributed by SN, 29-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) | ||
| Theorem | sn-suprubd 42489* | suprubd 12152 without ax-mulcom 11139, proven trivially from sn-suprcld 42488. (Contributed by SN, 29-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | sn-base0 42490 | Avoid axioms in base0 17191 by using the discouraged df-base 17187. This kind of axiom save is probably not worth it. (Contributed by SN, 16-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∅ = (Base‘∅) | ||
| Theorem | nelsubginvcld 42491 | The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ∈ (𝐵 ∖ 𝑆)) | ||
| Theorem | nelsubgcld 42492 | A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) | ||
| Theorem | nelsubgsubcld 42493 | A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐵 ∖ 𝑆)) | ||
| Theorem | rnasclg 42494 | The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 })) | ||
| Theorem | frlmfielbas 42495 | The vectors of a finite free module are the functions from 𝐼 to 𝑁. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑋 ∈ 𝐵 ↔ 𝑋:𝐼⟶𝑁)) | ||
| Theorem | frlmfzwrd 42496 | A vector of a module with indices from 0 to 𝑁 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) | ||
| Theorem | frlmfzowrd 42497 | A vector of a module with indices from 0 to 𝑁 − 1 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) | ||
| Theorem | frlmfzolen 42498 | The dimension of a vector of a module with indices from 0 to 𝑁 − 1. (Contributed by SN, 1-Sep-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (♯‘𝑋) = 𝑁) | ||
| Theorem | frlmfzowrdb 42499 | The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) | ||
| Theorem | frlmfzoccat 42500 | The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) & ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) & ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ 𝐷 = (Base‘𝑌) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑈 ∈ 𝐶) & ⊢ (𝜑 → 𝑉 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |