| Metamath
Proof Explorer Theorem List (p. 425 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sn-subcl 42401 | subcl 11380 without ax-mulcom 11092. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | ||
| Theorem | sn-subf 42402 | subf 11383 without ax-mulcom 11092. (Contributed by SN, 5-May-2024.) |
| ⊢ − :(ℂ × ℂ)⟶ℂ | ||
| Theorem | resubeqsub 42403 | Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subresre 42404 | Subtraction restricted to the reals. (Contributed by SN, 5-May-2024.) |
| ⊢ −ℝ = ( − ↾ (ℝ × ℝ)) | ||
| Theorem | addinvcom 42405 | A number commutes with its additive inverse. Compare remulinvcom 42406. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐵 + 𝐴) = 0) | ||
| Theorem | remulinvcom 42406 | A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 11092. (Contributed by SN, 5-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐵 · 𝐴) = 1) | ||
| Theorem | remullid 42407 | Commuted version of ax-1rid 11098 without ax-mulcom 11092. (Contributed by SN, 5-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) | ||
| Theorem | sn-1ticom 42408 | Lemma for sn-mullid 42409 and sn-it1ei 42410. (Contributed by SN, 27-May-2024.) |
| ⊢ (1 · i) = (i · 1) | ||
| Theorem | sn-mullid 42409 | mullid 11133 without ax-mulcom 11092. (Contributed by SN, 27-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
| Theorem | sn-it1ei 42410 | it1ei 42289 without ax-mulcom 11092. (See sn-mullid 42409 for commuted version). (Contributed by SN, 1-Jun-2024.) |
| ⊢ (i · 1) = i | ||
| Theorem | ipiiie0 42411 | The multiplicative inverse of i (per i4 14129) is also its additive inverse. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (i + (i · (i · i))) = 0 | ||
| Theorem | remulcand 42412 | Commuted version of remulcan2d 42230 without ax-mulcom 11092. (Contributed by SN, 21-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Syntax | crediv 42413 | Real number division. |
| class /ℝ | ||
| Definition | df-rediv 42414* | Define division between real numbers. This operator saves ax-mulcom 11092 over df-div 11796 in certain situations. (Contributed by SN, 25-Nov-2025.) |
| ⊢ /ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (℩𝑧 ∈ ℝ (𝑦 · 𝑧) = 𝑥)) | ||
| Theorem | redivvald 42415* | Value of real division, which is the (unique) real 𝑥 such that (𝐵 · 𝑥) = 𝐴. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) | ||
| Theorem | rediveud 42416* | Existential uniqueness of real quotients. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) | ||
| Theorem | sn-redivcld 42417 | Closure law for real division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /ℝ 𝐵) ∈ ℝ) | ||
| Theorem | redivmuld 42418 | Relationship between division and multiplication. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 /ℝ 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴)) | ||
| Theorem | redivcan2d 42419 | A cancellation law for division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐵 · (𝐴 /ℝ 𝐵)) = 𝐴) | ||
| Theorem | redivcan3d 42420 | A cancellation law for division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐴) /ℝ 𝐵) = 𝐴) | ||
| Theorem | sn-rereccld 42421 | Closure law for reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (1 /ℝ 𝐴) ∈ ℝ) | ||
| Theorem | rerecid 42422 | Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · (1 /ℝ 𝐴)) = 1) | ||
| Theorem | rerecid2 42423 | Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ((1 /ℝ 𝐴) · 𝐴) = 1) | ||
| Theorem | sn-0tie0 42424 | Lemma for sn-mul02 42425. Commuted version of sn-it0e0 42389. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (0 · i) = 0 | ||
| Theorem | sn-mul02 42425 | mul02 11312 without ax-mulcom 11092. See https://github.com/icecream17/Stuff/blob/main/math/0A%3D0.md 11092 for an outline. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | ||
| Theorem | sn-ltaddpos 42426 | ltaddpos 11628 without ax-mulcom 11092. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | ||
| Theorem | sn-ltaddneg 42427 | ltaddneg 11350 without ax-mulcom 11092. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵)) | ||
| Theorem | reposdif 42428 | Comparison of two numbers whose difference is positive. Compare posdif 11631. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) | ||
| Theorem | relt0neg1 42429 | Comparison of a real and its negative to zero. Compare lt0neg1 11644. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 −ℝ 𝐴))) | ||
| Theorem | relt0neg2 42430 | Comparison of a real and its negative to zero. Compare lt0neg2 11645. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 −ℝ 𝐴) < 0)) | ||
| Theorem | sn-addlt0d 42431 | The sum of negative numbers is negative. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 𝐵 < 0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < 0) | ||
| Theorem | sn-addgt0d 42432 | The sum of positive numbers is positive. Proof of addgt0d 11713 without ax-mulcom 11092. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) | ||
| Theorem | sn-nnne0 42433 | nnne0 12180 without ax-mulcom 11092. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | reelznn0nn 42434 | elznn0nn 12503 restated using df-resub 42339. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ (0 −ℝ 𝑁) ∈ ℕ))) | ||
| Theorem | nn0addcom 42435 | Addition is commutative for nonnegative integers. Proven without ax-mulcom 11092. (Contributed by SN, 1-Feb-2025.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | zaddcomlem 42436 | Lemma for zaddcom 42437. (Contributed by SN, 1-Feb-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | zaddcom 42437 | Addition is commutative for integers. Proven without ax-mulcom 11092. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | renegmulnnass 42438 | Move multiplication by a natural number inside and outside negation. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((0 −ℝ 𝐴) · 𝑁) = (0 −ℝ (𝐴 · 𝑁))) | ||
| Theorem | nn0mulcom 42439 | Multiplication is commutative for nonnegative integers. Proven without ax-mulcom 11092. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | zmulcomlem 42440 | Lemma for zmulcom 42441. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | zmulcom 42441 | Multiplication is commutative for integers. Proven without ax-mulcom 11092. From this result and grpcominv1 42481, we can show that rationals commute under multiplication without using ax-mulcom 11092. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | mulgt0con1dlem 42442 | Lemma for mulgt0con1d 42443. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) & ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) ⇒ ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) | ||
| Theorem | mulgt0con1d 42443 | Counterpart to mulgt0con2d 42444, though not a lemma. This is the first use of ax-pre-mulgt0 11105. One direction of mulgt0b2d 42451. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐴 < 0) | ||
| Theorem | mulgt0con2d 42444 | Lemma for mulgt0b1d 42445 and contrapositive of mulgt0 11211. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐵 < 0) | ||
| Theorem | mulgt0b1d 42445 | Biconditional, deductive form of mulgt0 11211. The second factor is positive iff the product is. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵))) | ||
| Theorem | sn-ltmul2d 42446 | ltmul2d 12997 without ax-mulcom 11092. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐶) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵)) | ||
| Theorem | sn-ltmulgt11d 42447 | ltmulgt11d 12990 without ax-mulcom 11092. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (1 < 𝐴 ↔ 𝐵 < (𝐵 · 𝐴))) | ||
| Theorem | sn-0lt1 42448 | 0lt1 11660 without ax-mulcom 11092. (Contributed by SN, 13-Feb-2024.) |
| ⊢ 0 < 1 | ||
| Theorem | sn-ltp1 42449 | ltp1 11982 without ax-mulcom 11092. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | ||
| Theorem | sn-recgt0d 42450 | The reciprocal of a positive real is positive. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 0 < (1 /ℝ 𝐴)) | ||
| Theorem | mulgt0b2d 42451 | Biconditional, deductive form of mulgt0 11211. The first factor is positive iff the product is. (Contributed by SN, 24-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵))) | ||
| Theorem | sn-mulgt1d 42452 | mulgt1d 12079 without ax-mulcom 11092. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 1 < 𝐵) ⇒ ⊢ (𝜑 → 1 < (𝐴 · 𝐵)) | ||
| Theorem | reneg1lt0 42453 | Negative one is a negative number. (Contributed by SN, 1-Jun-2024.) |
| ⊢ (0 −ℝ 1) < 0 | ||
| Theorem | sn-reclt0d 42454 | The reciprocal of a negative real is negative. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → (1 /ℝ 𝐴) < 0) | ||
| Theorem | mulltgt0d 42455 | Negative times positive is negative. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | ||
| Theorem | mullt0b1d 42456 | When the first term is negative, the second term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0)) | ||
| Theorem | mullt0b2d 42457 | When the second term is negative, the first term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 0) ⇒ ⊢ (𝜑 → (0 < 𝐴 ↔ (𝐴 · 𝐵) < 0)) | ||
| Theorem | sn-mullt0d 42458 | The product of two negative numbers is positive. (Contributed by SN, 1-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 𝐵 < 0) ⇒ ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) | ||
| Theorem | sn-msqgt0d 42459 | A nonzero square is positive. (Contributed by SN, 1-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → 0 < (𝐴 · 𝐴)) | ||
| Theorem | sn-inelr 42460 | inelr 12136 without ax-mulcom 11092. (Contributed by SN, 1-Jun-2024.) |
| ⊢ ¬ i ∈ ℝ | ||
| Theorem | sn-itrere 42461 | i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.) |
| ⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0)) | ||
| Theorem | sn-retire 42462 | Commuted version of sn-itrere 42461. (Contributed by SN, 27-Jun-2024.) |
| ⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0)) | ||
| Theorem | cnreeu 42463 | The reals in the expression given by cnre 11131 uniquely define a complex number. (Contributed by SN, 27-Jun-2024.) |
| ⊢ (𝜑 → 𝑟 ∈ ℝ) & ⊢ (𝜑 → 𝑠 ∈ ℝ) & ⊢ (𝜑 → 𝑡 ∈ ℝ) & ⊢ (𝜑 → 𝑢 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡 ∧ 𝑠 = 𝑢))) | ||
| Theorem | sn-sup2 42464* | sup2 12099 with exactly the same proof except for using sn-ltp1 42449 instead of ltp1 11982, saving ax-mulcom 11092. (Contributed by SN, 26-Jun-2024.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | sn-sup3d 42465* | sup3 12100 without ax-mulcom 11092, proven trivially from sn-sup2 42464. (Contributed by SN, 29-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | sn-suprcld 42466* | suprcld 12106 without ax-mulcom 11092, proven trivially from sn-sup3d 42465. (Contributed by SN, 29-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) | ||
| Theorem | sn-suprubd 42467* | suprubd 12105 without ax-mulcom 11092, proven trivially from sn-suprcld 42466. (Contributed by SN, 29-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | sn-base0 42468 | Avoid axioms in base0 17143 by using the discouraged df-base 17139. This kind of axiom save is probably not worth it. (Contributed by SN, 16-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∅ = (Base‘∅) | ||
| Theorem | nelsubginvcld 42469 | The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ∈ (𝐵 ∖ 𝑆)) | ||
| Theorem | nelsubgcld 42470 | A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) | ||
| Theorem | nelsubgsubcld 42471 | A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐵 ∖ 𝑆)) | ||
| Theorem | rnasclg 42472 | The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 })) | ||
| Theorem | frlmfielbas 42473 | The vectors of a finite free module are the functions from 𝐼 to 𝑁. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑋 ∈ 𝐵 ↔ 𝑋:𝐼⟶𝑁)) | ||
| Theorem | frlmfzwrd 42474 | A vector of a module with indices from 0 to 𝑁 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) | ||
| Theorem | frlmfzowrd 42475 | A vector of a module with indices from 0 to 𝑁 − 1 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) | ||
| Theorem | frlmfzolen 42476 | The dimension of a vector of a module with indices from 0 to 𝑁 − 1. (Contributed by SN, 1-Sep-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (♯‘𝑋) = 𝑁) | ||
| Theorem | frlmfzowrdb 42477 | The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) | ||
| Theorem | frlmfzoccat 42478 | The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) & ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) & ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ 𝐷 = (Base‘𝑌) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑈 ∈ 𝐶) & ⊢ (𝜑 → 𝑉 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵) | ||
| Theorem | frlmvscadiccat 42479 | Scalar multiplication distributes over concatenation. (Contributed by SN, 6-Sep-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) & ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) & ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ 𝐷 = (Base‘𝑌) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑈 ∈ 𝐶) & ⊢ (𝜑 → 𝑉 ∈ 𝐷) & ⊢ 𝑂 = ( ·𝑠 ‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝑋) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴𝑂(𝑈 ++ 𝑉)) = ((𝐴 ∙ 𝑈) ++ (𝐴 · 𝑉))) | ||
| Theorem | grpasscan2d 42480 | An associative cancellation law for groups. (Contributed by SN, 29-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = 𝑋) | ||
| Theorem | grpcominv1 42481 | If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) ⇒ ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) | ||
| Theorem | grpcominv2 42482 | If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) ⇒ ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) | ||
| Theorem | finsubmsubg 42483 | A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid ℕ0 of the group (ℤ, + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid (ℕ0 ∖ {1}) of the group (ℤ, + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by (ℕ0 ∖ {1}) is ℤ, not (ℤ ∖ {1, -1}). (Contributed by SN, 31-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | ||
| Theorem | opprmndb 42484 | A class is a monoid if and only if its opposite (ring) is a monoid. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) | ||
| Theorem | opprgrpb 42485 | A class is a group if and only if its opposite (ring) is a group. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) | ||
| Theorem | opprablb 42486 | A class is an Abelian group if and only if its opposite (ring) is an Abelian group. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ Abel ↔ 𝑂 ∈ Abel) | ||
| Theorem | imacrhmcl 42487 | The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025.) |
| ⊢ 𝐶 = (𝑁 ↾s (𝐹 “ 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ (𝑀 RingHom 𝑁)) & ⊢ (𝜑 → 𝑀 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑀)) ⇒ ⊢ (𝜑 → 𝐶 ∈ CRing) | ||
| Theorem | rimrcl1 42488 | Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑅 ∈ Ring) | ||
| Theorem | rimrcl2 42489 | Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring) | ||
| Theorem | rimcnv 42490 | The converse of a ring isomorphism is a ring isomorphism. (Contributed by SN, 10-Jan-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → ◡𝐹 ∈ (𝑆 RingIso 𝑅)) | ||
| Theorem | rimco 42491 | The composition of ring isomorphisms is a ring isomorphism. (Contributed by SN, 17-Jan-2025.) |
| ⊢ ((𝐹 ∈ (𝑆 RingIso 𝑇) ∧ 𝐺 ∈ (𝑅 RingIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 RingIso 𝑇)) | ||
| Theorem | ricsym 42492 | Ring isomorphism is symmetric. (Contributed by SN, 10-Jan-2025.) |
| ⊢ (𝑅 ≃𝑟 𝑆 → 𝑆 ≃𝑟 𝑅) | ||
| Theorem | rictr 42493 | Ring isomorphism is transitive. (Contributed by SN, 17-Jan-2025.) |
| ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑆 ≃𝑟 𝑇) → 𝑅 ≃𝑟 𝑇) | ||
| Theorem | riccrng1 42494 | Ring isomorphism preserves (multiplicative) commutativity. (Contributed by SN, 10-Jan-2025.) |
| ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) | ||
| Theorem | riccrng 42495 | A ring is commutative if and only if an isomorphic ring is commutative. (Contributed by SN, 10-Jan-2025.) |
| ⊢ (𝑅 ≃𝑟 𝑆 → (𝑅 ∈ CRing ↔ 𝑆 ∈ CRing)) | ||
| Theorem | domnexpgn0cl 42496 | In a domain, a (nonnegative) power of a nonzero element is nonzero. (Contributed by SN, 6-Jul-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐵 ∖ { 0 })) | ||
| Theorem | drnginvrn0d 42497 | A multiplicative inverse in a division ring is nonzero. (recne0d 11912 analog). (Contributed by SN, 14-Aug-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ≠ 0 ) | ||
| Theorem | drngmullcan 42498 | Cancellation of a nonzero factor on the left for multiplication. (mulcanad 11773 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ≠ 0 ) & ⊢ (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | drngmulrcan 42499 | Cancellation of a nonzero factor on the right for multiplication. (mulcan2ad 11774 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ≠ 0 ) & ⊢ (𝜑 → (𝑋 · 𝑍) = (𝑌 · 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | drnginvmuld 42500 | Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼‘𝑌) · (𝐼‘𝑋))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |