HomeHome Metamath Proof Explorer
Theorem List (p. 425 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30854)
  Hilbert Space Explorer  Hilbert Space Explorer
(30855-32377)
  Users' Mathboxes  Users' Mathboxes
(32378-49798)
 

Theorem List for Metamath Proof Explorer - 42401-42500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsn-0ne2 42401 0ne2 12395 without ax-mulcom 11139. (Contributed by SN, 23-Jan-2024.)
0 ≠ 2
 
Theoremremul01 42402 Real number version of mul01 11360 proven without ax-mulcom 11139. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 · 0) = 0)
 
Theoremsn-remul0ord 42403 A product is zero iff one of its factors are zero. (Contributed by SN, 24-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
 
Theoremresubid 42404 Subtraction of a real number from itself (compare subid 11448). (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 𝐴) = 0)
 
Theoremreaddrid 42405 Real number version of addrid 11361 without ax-mulcom 11139. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
 
Theoremresubid1 42406 Real number version of subid1 11449 without ax-mulcom 11139. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 0) = 𝐴)
 
Theoremrenegneg 42407 A real number is equal to the negative of its negative. Compare negneg 11479. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)
 
Theoremreaddcan2 42408 Commuted version of readdcan 11355 without ax-mulcom 11139. (Contributed by SN, 21-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremrenegid2 42409 Commuted version of renegid 42368. (Contributed by SN, 4-May-2024.)
(𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)
 
Theoremremulneg2d 42410 Product with negative is negative of product. (Contributed by SN, 25-Jan-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 · (0 − 𝐵)) = (0 − (𝐴 · 𝐵)))
 
Theoremsn-it0e0 42411 Proof of it0e0 12412 without ax-mulcom 11139. Informally, a real number times 0 is 0, and 𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11148 and renegid2 42409. (Contributed by SN, 30-Apr-2024.)
(i · 0) = 0
 
Theoremsn-negex12 42412* A combination of cnegex 11362 and cnegex2 11363, this proof takes cnre 11178 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.) (Proof shortened by SN, 4-Jul-2025.)
(𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))
 
Theoremsn-negex 42413* Proof of cnegex 11362 without ax-mulcom 11139. (Contributed by SN, 30-Apr-2024.)
(𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝐴 + 𝑏) = 0)
 
Theoremsn-negex2 42414* Proof of cnegex2 11363 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝑏 + 𝐴) = 0)
 
Theoremsn-addcand 42415 addcand 11384 without ax-mulcom 11139. Note how the proof is almost identical to addcan 11365. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremsn-addrid 42416 addrid 11361 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
 
Theoremsn-addcan2d 42417 addcan2d 11385 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremreixi 42418 ixi 11814 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.)
(i · i) = (0 − 1)
 
Theoremrei4 42419 i4 14176 without ax-mulcom 11139. (Contributed by SN, 27-May-2024.)
((i · i) · (i · i)) = 1
 
Theoremsn-addid0 42420 A number that sums to itself is zero. Compare addid0 11604, readdridaddlidd 42253. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (𝐴 + 𝐴) = 𝐴)       (𝜑𝐴 = 0)
 
Theoremsn-mul01 42421 mul01 11360 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ ℂ → (𝐴 · 0) = 0)
 
Theoremsn-subeu 42422* negeu 11418 without ax-mulcom 11139 and complex number version of resubeu 42372. (Contributed by SN, 5-May-2024.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
 
Theoremsn-subcl 42423 subcl 11427 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
 
Theoremsn-subf 42424 subf 11430 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.)
− :(ℂ × ℂ)⟶ℂ
 
Theoremresubeqsub 42425 Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝐴𝐵))
 
Theoremsubresre 42426 Subtraction restricted to the reals. (Contributed by SN, 5-May-2024.)
= ( − ↾ (ℝ × ℝ))
 
Theoremaddinvcom 42427 A number commutes with its additive inverse. Compare remulinvcom 42428. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴 + 𝐵) = 0)       (𝜑 → (𝐵 + 𝐴) = 0)
 
Theoremremulinvcom 42428 A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 11139. (Contributed by SN, 5-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (𝐴 · 𝐵) = 1)       (𝜑 → (𝐵 · 𝐴) = 1)
 
Theoremremullid 42429 Commuted version of ax-1rid 11145 without ax-mulcom 11139. (Contributed by SN, 5-Feb-2024.)
(𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
 
Theoremsn-1ticom 42430 Lemma for sn-mullid 42431 and sn-it1ei 42432. (Contributed by SN, 27-May-2024.)
(1 · i) = (i · 1)
 
Theoremsn-mullid 42431 mullid 11180 without ax-mulcom 11139. (Contributed by SN, 27-May-2024.)
(𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
 
Theoremsn-it1ei 42432 it1ei 42311 without ax-mulcom 11139. (See sn-mullid 42431 for commuted version). (Contributed by SN, 1-Jun-2024.)
(i · 1) = i
 
Theoremipiiie0 42433 The multiplicative inverse of i (per i4 14176) is also its additive inverse. (Contributed by SN, 30-Jun-2024.)
(i + (i · (i · i))) = 0
 
Theoremremulcand 42434 Commuted version of remulcan2d 42252 without ax-mulcom 11139. (Contributed by SN, 21-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
 
Syntaxcrediv 42435 Real number division.
class /
 
Definitiondf-rediv 42436* Define division between real numbers. This operator saves ax-mulcom 11139 over df-div 11843 in certain situations. (Contributed by SN, 25-Nov-2025.)
/ = (𝑥 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (𝑧 ∈ ℝ (𝑦 · 𝑧) = 𝑥))
 
Theoremredivvald 42437* Value of real division, which is the (unique) real 𝑥 such that (𝐵 · 𝑥) = 𝐴. (Contributed by SN, 25-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐴 / 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
 
Theoremrediveud 42438* Existential uniqueness of real quotients. (Contributed by SN, 25-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
 
Theoremsn-redivcld 42439 Closure law for real division. (Contributed by SN, 25-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
 
Theoremredivmuld 42440 Relationship between division and multiplication. (Contributed by SN, 25-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))
 
Theoremredivcan2d 42441 A cancellation law for division. (Contributed by SN, 25-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
 
Theoremredivcan3d 42442 A cancellation law for division. (Contributed by SN, 25-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴)
 
Theoremsn-rereccld 42443 Closure law for reciprocal. (Contributed by SN, 25-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (1 / 𝐴) ∈ ℝ)
 
Theoremrerecid 42444 Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (𝐴 · (1 / 𝐴)) = 1)
 
Theoremrerecid2 42445 Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → ((1 / 𝐴) · 𝐴) = 1)
 
Theoremsn-0tie0 42446 Lemma for sn-mul02 42447. Commuted version of sn-it0e0 42411. (Contributed by SN, 30-Jun-2024.)
(0 · i) = 0
 
Theoremsn-mul02 42447 mul02 11359 without ax-mulcom 11139. See https://github.com/icecream17/Stuff/blob/main/math/0A%3D0.md 11139 for an outline. (Contributed by SN, 30-Jun-2024.)
(𝐴 ∈ ℂ → (0 · 𝐴) = 0)
 
Theoremsn-ltaddpos 42448 ltaddpos 11675 without ax-mulcom 11139. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
 
Theoremsn-ltaddneg 42449 ltaddneg 11397 without ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵))
 
Theoremreposdif 42450 Comparison of two numbers whose difference is positive. Compare posdif 11678. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 𝐴)))
 
Theoremrelt0neg1 42451 Comparison of a real and its negative to zero. Compare lt0neg1 11691. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 − 𝐴)))
 
Theoremrelt0neg2 42452 Comparison of a real and its negative to zero. Compare lt0neg2 11692. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 − 𝐴) < 0))
 
Theoremsn-addlt0d 42453 The sum of negative numbers is negative. (Contributed by SN, 25-Jan-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)    &   (𝜑𝐵 < 0)       (𝜑 → (𝐴 + 𝐵) < 0)
 
Theoremsn-addgt0d 42454 The sum of positive numbers is positive. Proof of addgt0d 11760 without ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → 0 < 𝐵)       (𝜑 → 0 < (𝐴 + 𝐵))
 
Theoremsn-nnne0 42455 nnne0 12227 without ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.)
(𝐴 ∈ ℕ → 𝐴 ≠ 0)
 
Theoremreelznn0nn 42456 elznn0nn 12550 restated using df-resub 42361. (Contributed by SN, 25-Jan-2025.)
(𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ (0 − 𝑁) ∈ ℕ)))
 
Theoremnn0addcom 42457 Addition is commutative for nonnegative integers. Proven without ax-mulcom 11139. (Contributed by SN, 1-Feb-2025.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremzaddcomlem 42458 Lemma for zaddcom 42459. (Contributed by SN, 1-Feb-2025.)
(((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremzaddcom 42459 Addition is commutative for integers. Proven without ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremrenegmulnnass 42460 Move multiplication by a natural number inside and outside negation. (Contributed by SN, 25-Jan-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → ((0 − 𝐴) · 𝑁) = (0 − (𝐴 · 𝑁)))
 
Theoremnn0mulcom 42461 Multiplication is commutative for nonnegative integers. Proven without ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremzmulcomlem 42462 Lemma for zmulcom 42463. (Contributed by SN, 25-Jan-2025.)
(((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremzmulcom 42463 Multiplication is commutative for integers. Proven without ax-mulcom 11139. From this result and grpcominv1 42503, we can show that rationals commute under multiplication without using ax-mulcom 11139. (Contributed by SN, 25-Jan-2025.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremmulgt0con1dlem 42464 Lemma for mulgt0con1d 42465. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (0 < 𝐴 → 0 < 𝐵))    &   (𝜑 → (𝐴 = 0 → 𝐵 = 0))       (𝜑 → (𝐵 < 0 → 𝐴 < 0))
 
Theoremmulgt0con1d 42465 Counterpart to mulgt0con2d 42466, though not a lemma. This is the first use of ax-pre-mulgt0 11152. One direction of mulgt0b2d 42473. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐵)    &   (𝜑 → (𝐴 · 𝐵) < 0)       (𝜑𝐴 < 0)
 
Theoremmulgt0con2d 42466 Lemma for mulgt0b1d 42467 and contrapositive of mulgt0 11258. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → (𝐴 · 𝐵) < 0)       (𝜑𝐵 < 0)
 
Theoremmulgt0b1d 42467 Biconditional, deductive form of mulgt0 11258. The second factor is positive iff the product is. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))
 
Theoremsn-ltmul2d 42468 ltmul2d 13044 without ax-mulcom 11139. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → 0 < 𝐶)       (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵))
 
Theoremsn-ltmulgt11d 42469 ltmulgt11d 13037 without ax-mulcom 11139. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (1 < 𝐴𝐵 < (𝐵 · 𝐴)))
 
Theoremsn-0lt1 42470 0lt1 11707 without ax-mulcom 11139. (Contributed by SN, 13-Feb-2024.)
0 < 1
 
Theoremsn-ltp1 42471 ltp1 12029 without ax-mulcom 11139. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
 
Theoremsn-recgt0d 42472 The reciprocal of a positive real is positive. (Contributed by SN, 26-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑 → 0 < (1 / 𝐴))
 
Theoremmulgt0b2d 42473 Biconditional, deductive form of mulgt0 11258. The first factor is positive iff the product is. (Contributed by SN, 24-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵)))
 
Theoremsn-mulgt1d 42474 mulgt1d 12126 without ax-mulcom 11139. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑 → 1 < 𝐵)       (𝜑 → 1 < (𝐴 · 𝐵))
 
Theoremreneg1lt0 42475 Negative one is a negative number. (Contributed by SN, 1-Jun-2024.)
(0 − 1) < 0
 
Theoremsn-reclt0d 42476 The reciprocal of a negative real is negative. (Contributed by SN, 26-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑 → (1 / 𝐴) < 0)
 
Theoremmulltgt0d 42477 Negative times positive is negative. (Contributed by SN, 26-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (𝐴 · 𝐵) < 0)
 
Theoremmullt0b1d 42478 When the first term is negative, the second term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0))
 
Theoremmullt0b2d 42479 When the second term is negative, the first term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 < 0)       (𝜑 → (0 < 𝐴 ↔ (𝐴 · 𝐵) < 0))
 
Theoremsn-mullt0d 42480 The product of two negative numbers is positive. (Contributed by SN, 1-Dec-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)    &   (𝜑𝐵 < 0)       (𝜑 → 0 < (𝐴 · 𝐵))
 
Theoremsn-msqgt0d 42481 A nonzero square is positive. (Contributed by SN, 1-Dec-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → 0 < (𝐴 · 𝐴))
 
Theoremsn-inelr 42482 inelr 12183 without ax-mulcom 11139. (Contributed by SN, 1-Jun-2024.)
¬ i ∈ ℝ
 
Theoremsn-itrere 42483 i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.)
(𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))
 
Theoremsn-retire 42484 Commuted version of sn-itrere 42483. (Contributed by SN, 27-Jun-2024.)
(𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0))
 
Theoremcnreeu 42485 The reals in the expression given by cnre 11178 uniquely define a complex number. (Contributed by SN, 27-Jun-2024.)
(𝜑𝑟 ∈ ℝ)    &   (𝜑𝑠 ∈ ℝ)    &   (𝜑𝑡 ∈ ℝ)    &   (𝜑𝑢 ∈ ℝ)       (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡𝑠 = 𝑢)))
 
Theoremsn-sup2 42486* sup2 12146 with exactly the same proof except for using sn-ltp1 42471 instead of ltp1 12029, saving ax-mulcom 11139. (Contributed by SN, 26-Jun-2024.)
((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremsn-sup3d 42487* sup3 12147 without ax-mulcom 11139, proven trivially from sn-sup2 42486. (Contributed by SN, 29-Jun-2025.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremsn-suprcld 42488* suprcld 12153 without ax-mulcom 11139, proven trivially from sn-sup3d 42487. (Contributed by SN, 29-Jun-2025.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)       (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
 
Theoremsn-suprubd 42489* suprubd 12152 without ax-mulcom 11139, proven trivially from sn-suprcld 42488. (Contributed by SN, 29-Jun-2025.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)    &   (𝜑𝐵𝐴)       (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
 
21.30.6  Structures
 
Theoremsn-base0 42490 Avoid axioms in base0 17191 by using the discouraged df-base 17187. This kind of axiom save is probably not worth it. (Contributed by SN, 16-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
∅ = (Base‘∅)
 
Theoremnelsubginvcld 42491 The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       (𝜑 → (𝑁𝑋) ∈ (𝐵𝑆))
 
Theoremnelsubgcld 42492 A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   (𝜑𝑌𝑆)    &    + = (+g𝐺)       (𝜑 → (𝑋 + 𝑌) ∈ (𝐵𝑆))
 
Theoremnelsubgsubcld 42493 A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   (𝜑𝑌𝑆)    &    = (-g𝐺)       (𝜑 → (𝑋 𝑌) ∈ (𝐵𝑆))
 
Theoremrnasclg 42494 The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.)
𝐴 = (algSc‘𝑊)    &    1 = (1r𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 }))
 
Theoremfrlmfielbas 42495 The vectors of a finite free module are the functions from 𝐼 to 𝑁. (Contributed by SN, 31-Aug-2023.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝑁 = (Base‘𝑅)    &   𝐵 = (Base‘𝐹)       ((𝑅𝑉𝐼 ∈ Fin) → (𝑋𝐵𝑋:𝐼𝑁))
 
Theoremfrlmfzwrd 42496 A vector of a module with indices from 0 to 𝑁 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0...𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       (𝑋𝐵𝑋 ∈ Word 𝑆)
 
Theoremfrlmfzowrd 42497 A vector of a module with indices from 0 to 𝑁 − 1 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       (𝑋𝐵𝑋 ∈ Word 𝑆)
 
Theoremfrlmfzolen 42498 The dimension of a vector of a module with indices from 0 to 𝑁 − 1. (Contributed by SN, 1-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       ((𝑁 ∈ ℕ0𝑋𝐵) → (♯‘𝑋) = 𝑁)
 
Theoremfrlmfzowrdb 42499 The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)))
 
Theoremfrlmfzoccat 42500 The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0..^𝐿))    &   𝑋 = (𝐾 freeLMod (0..^𝑀))    &   𝑌 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝐶 = (Base‘𝑋)    &   𝐷 = (Base‘𝑌)    &   (𝜑𝐾𝑍)    &   (𝜑 → (𝑀 + 𝑁) = 𝐿)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑈𝐶)    &   (𝜑𝑉𝐷)       (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49798
  Copyright terms: Public domain < Previous  Next >