Home | Metamath
Proof Explorer Theorem List (p. 425 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29646) |
Hilbert Space Explorer
(29647-31169) |
Users' Mathboxes
(31170-46966) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | aaanv 42401* | Theorem *11.56 in [WhiteheadRussell] p. 165. Special case of aaan 2329. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥𝜑 ∧ ∀𝑦𝜓) ↔ ∀𝑥∀𝑦(𝜑 ∧ 𝜓)) | ||
Theorem | pm11.57 42402* | Theorem *11.57 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | pm11.58 42403* | Theorem *11.58 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | pm11.59 42404* | Theorem *11.59 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) | ||
Theorem | pm11.6 42405* | Theorem *11.6 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦(∃𝑥(𝜑 ∧ 𝜒) ∧ 𝜓)) | ||
Theorem | pm11.61 42406* | Theorem *11.61 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) | ||
Theorem | pm11.62 42407* | Theorem *11.62 in [WhiteheadRussell] p. 166. Importation combined with the rearrangement with quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝜒) ↔ ∀𝑥(𝜑 → ∀𝑦(𝜓 → 𝜒))) | ||
Theorem | pm11.63 42408 | Theorem *11.63 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (¬ ∃𝑥∃𝑦𝜑 → ∀𝑥∀𝑦(𝜑 → 𝜓)) | ||
Theorem | pm11.7 42409 | Theorem *11.7 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜑) ↔ ∃𝑥∃𝑦𝜑) | ||
Theorem | pm11.71 42410* | Theorem *11.71 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜒) → ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑦(𝜒 → 𝜃)) ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃)))) | ||
Theorem | sbeqal1 42411* | If 𝑥 = 𝑦 always implies 𝑥 = 𝑧, then 𝑦 = 𝑧. (Contributed by Andrew Salmon, 2-Jun-2011.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) → 𝑦 = 𝑧) | ||
Theorem | sbeqal1i 42412* | Suppose you know 𝑥 = 𝑦 implies 𝑥 = 𝑧, assuming 𝑥 and 𝑧 are distinct. Then, 𝑦 = 𝑧. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑧) ⇒ ⊢ 𝑦 = 𝑧 | ||
Theorem | sbeqal2i 42413* | If 𝑥 = 𝑦 implies 𝑥 = 𝑧, then we can infer 𝑧 = 𝑦. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑧) ⇒ ⊢ 𝑧 = 𝑦 | ||
Theorem | axc5c4c711 42414 | Proof of a theorem that can act as a sole axiom for pure predicate calculus with ax-gen 1798 as the inference rule. This proof extends the idea of axc5c711 37266 and related theorems. (Contributed by Andrew Salmon, 14-Jul-2011.) |
⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓))) → (∀𝑦𝜑 → ∀𝑦𝜓)) | ||
Theorem | axc5c4c711toc5 42415 | Rederivation of sp 2177 from axc5c4c711 42414. Note that ax6 2384 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) Revised to use ax6v 1973 instead of ax6 2384, so that this rederivation requires only ax6v 1973 and propositional calculus. (Revised by BJ, 14-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | axc5c4c711toc4 42416 | Rederivation of axc4 2316 from axc5c4c711 42414. Note that only propositional calculus is required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
Theorem | axc5c4c711toc7 42417 | Rederivation of axc7 2312 from axc5c4c711 42414. Note that neither axc7 2312 nor ax-11 2155 are required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | ||
Theorem | axc5c4c711to11 42418 | Rederivation of ax-11 2155 from axc5c4c711 42414. Note that ax-11 2155 is not required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Theorem | axc11next 42419* | This theorem shows that, given axextb 2712, we can derive a version of axc11n 2426. However, it is weaker than axc11n 2426 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧 𝑧 = 𝑥) | ||
Theorem | pm13.13a 42420 | One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑) | ||
Theorem | pm13.13b 42421 | Theorem *13.13 in [WhiteheadRussell] p. 178 with different variable substitution. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (([𝐴 / 𝑥]𝜑 ∧ 𝑥 = 𝐴) → 𝜑) | ||
Theorem | pm13.14 42422 | Theorem *13.14 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥 ≠ 𝐴) | ||
Theorem | pm13.192 42423* | Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) | ||
Theorem | pm13.193 42424 | Theorem *13.193 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 ∧ 𝑥 = 𝑦)) | ||
Theorem | pm13.194 42425 | Theorem *13.194 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦)) | ||
Theorem | pm13.195 42426* | Theorem *13.195 in [WhiteheadRussell] p. 179. This theorem is very similar to sbc5 3766. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) | ||
Theorem | pm13.196a 42427* | Theorem *13.196 in [WhiteheadRussell] p. 179. The only difference is the position of the substituted variable. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (¬ 𝜑 ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 ≠ 𝑥)) | ||
Theorem | 2sbc6g 42428* | Theorem *13.21 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | ||
Theorem | 2sbc5g 42429* | Theorem *13.22 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∃𝑧∃𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | ||
Theorem | iotain 42430 | Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) | ||
Theorem | iotaexeu 42431 | The iota class exists. This theorem does not require ax-nul 5262 for its proof. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | ||
Theorem | iotasbc 42432* | Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define ℩ in terms of a function of (℩𝑥𝜑). Their definition differs in that a function of (℩𝑥𝜑) evaluates to "false" when there isn't a single 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) | ||
Theorem | iotasbc2 42433* | Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | ||
Theorem | pm14.12 42434* | Theorem *14.12 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | pm14.122a 42435* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑))) | ||
Theorem | pm14.122b 42436* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∃𝑥𝜑))) | ||
Theorem | pm14.122c 42437* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∃𝑥𝜑))) | ||
Theorem | pm14.123a 42438* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))) | ||
Theorem | pm14.123b 42439* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) | ||
Theorem | pm14.123c 42440* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) | ||
Theorem | pm14.18 42441 | Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
Theorem | iotaequ 42442* | Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (℩𝑥𝑥 = 𝑦) = 𝑦 | ||
Theorem | iotavalb 42443* | Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6463. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) | ||
Theorem | iotasbc5 42444* | Theorem *14.205 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) | ||
Theorem | pm14.24 42445* | Theorem *14.24 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = (℩𝑥𝜑))) | ||
Theorem | iotavalsb 42446* | Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) | ||
Theorem | sbiota1 42447 | Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
Theorem | sbaniota 42448 | Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
Theorem | eubiOLD 42449 | Obsolete proof of eubi 2584 as of 7-Oct-2022. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)) | ||
Theorem | iotasbcq 42450 | Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) | ||
Theorem | elnev 42451* | Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.) |
⊢ (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) | ||
Theorem | rusbcALT 42452 | A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
Theorem | compeq 42453* | Equality between two ways of saying "the complement of 𝐴". (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ (V ∖ 𝐴) = {𝑥 ∣ ¬ 𝑥 ∈ 𝐴} | ||
Theorem | compne 42454 | The complement of 𝐴 is not equal to 𝐴. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 11-Nov-2021.) |
⊢ (V ∖ 𝐴) ≠ 𝐴 | ||
Theorem | compab 42455 | Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ (V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} | ||
Theorem | conss2 42456 | Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)) | ||
Theorem | conss1 42457 | Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴) | ||
Theorem | ralbidar 42458 | More general form of ralbida 3252. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbidar 42459 | More general form of rexbida 3254. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | dropab1 42460 | Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑}) | ||
Theorem | dropab2 42461 | Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (∀𝑥 𝑥 = 𝑦 → {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜑}) | ||
Theorem | ipo0 42462 | If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) | ||
Theorem | ifr0 42463 | A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) | ||
Theorem | ordpss 42464 | ordelpss 6342 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) | ||
Theorem | fvsb 42465* | Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | ||
Theorem | fveqsb 42466* | Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | ||
Theorem | xpexb 42467 | A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) | ||
Theorem | trelpss 42468 | An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5615, ax-reg 9462 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.) |
⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) | ||
Theorem | addcomgi 42469 | Generalization of commutative law for addition. Simplifies proofs dealing with vectors. However, it is dependent on our particular definition of ordered pair. (Contributed by Andrew Salmon, 28-Jan-2012.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) | ||
Syntax | cplusr 42470 | Introduce the operation of vector addition. |
class +𝑟 | ||
Syntax | cminusr 42471 | Introduce the operation of vector subtraction. |
class -𝑟 | ||
Syntax | ctimesr 42472 | Introduce the operation of scalar multiplication. |
class .𝑣 | ||
Syntax | cptdfc 42473 | PtDf is a predicate that is crucial for the definition of lines as well as proving a number of important theorems. |
class PtDf(𝐴, 𝐵) | ||
Syntax | crr3c 42474 | RR3 is a class. |
class RR3 | ||
Syntax | cline3 42475 | line3 is a class. |
class line3 | ||
Definition | df-addr 42476* | Define the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ +𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) + (𝑦‘𝑣)))) | ||
Definition | df-subr 42477* | Define the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ -𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣)))) | ||
Definition | df-mulv 42478* | Define the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ .𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣)))) | ||
Theorem | addrval 42479* | Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) + (𝐵‘𝑣)))) | ||
Theorem | subrval 42480* | Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) − (𝐵‘𝑣)))) | ||
Theorem | mulvval 42481* | Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) | ||
Theorem | addrfv 42482 | Vector addition at a value. The operation takes each vector 𝐴 and 𝐵 and forms a new vector whose values are the sum of each of the values of 𝐴 and 𝐵. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) | ||
Theorem | subrfv 42483 | Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) | ||
Theorem | mulvfv 42484 | Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) | ||
Theorem | addrfn 42485 | Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) | ||
Theorem | subrfn 42486 | Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) Fn ℝ) | ||
Theorem | mulvfn 42487 | Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) Fn ℝ) | ||
Theorem | addrcom 42488 | Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) | ||
Definition | df-ptdf 42489* | Define the predicate PtDf, which is a utility definition used to shorten definitions and simplify proofs. (Contributed by Andrew Salmon, 15-Jul-2012.) |
⊢ PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3})) | ||
Definition | df-rr3 42490 | Define the set of all points RR3. We define each point 𝐴 as a function to allow the use of vector addition and subtraction as well as scalar multiplication in our proofs. (Contributed by Andrew Salmon, 15-Jul-2012.) |
⊢ RR3 = (ℝ ↑m {1, 2, 3}) | ||
Definition | df-line3 42491* | Define the set of all lines. A line is an infinite subset of RR3 that satisfies a PtDf property. (Contributed by Andrew Salmon, 15-Jul-2012.) |
⊢ line3 = {𝑥 ∈ 𝒫 RR3 ∣ (2o ≼ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))} | ||
We are sad to report the passing of long-time contributor Alan Sare (Nov. 9, 1954 - Mar. 23, 2019). Alan's first contribution to Metamath was a shorter proof for tfrlem8 8298 in 2008. He developed a tool called "completeusersproof" that assists developing proofs using his "virtual deduction" method: https://us.metamath.org/other.html#completeusersproof 8298. His virtual deduction method is explained in the comment for wvd1 42584. Below are some excerpts from his first emails to NM in 2007: ...I have been interested in proving set theory theorems for many years for mental exercise. I enjoy it. I have used a book by Martin Zuckerman. It is informal. I am interested in completely and perfectly proving theorems. Mr. Zuckerman leaves out most of the steps of a proof, of course, like most authors do, as you have noted. A complete proof for higher theorems would require a volume of writing similar to the Metamath documents. So I am frustrated when I am not capable of constructing a proof and Zuckerman leaves out steps I do not understand. I could search for the steps in other texts, but I don't do that too much. Metamath may be the answer for me.... ...If we go beyond mathematics, I believe that it is possible to write down all human knowledge in a way similar to the way you have explicated large areas of mathematics. Of course, that would be a much, much more difficult job. For example, it is possible to take a hard science like physics, construct axioms based on experimental results, and to cast all of physics into a collection of axioms and theorems. Maybe this has already been attempted, although I am not familiar with it. When one then moves on to the soft sciences such as social science, this job gets much more difficult. The key is: All human thought consists of logical operations on abstract objects. Usually, these logical operations are done informally. There is no reason why one cannot take any subject and explicate it and take it down to the indivisible postulates in a formal rigorous way.... ...When I read a math book or an engineering book I come across something I don't understand and I am compelled to understand it. But, often it is hopeless. I don't have the time. Or, I would have to read the same thing by multiple authors in the hope that different authors would give parts of the working proof that others have omitted. It is very inefficient. Because I have always been inclined to "get to the bottom" for a 100% fully understood proof.... | ||
Theorem | idiALT 42492 | Placeholder for idi 1. Though unnecessary, this theorem is sometimes used in proofs in this mathbox for pedagogical purposes. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
Theorem | exbir 42493 | Exportation implication also converting the consequent from a biconditional to an implication. Derived automatically from exbirVD 42868. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | 3impexpbicom 42494 | Version of 3impexp 1359 where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) | ||
Theorem | 3impexpbicomi 42495 | Inference associated with 3impexpbicom 42494. Derived automatically from 3impexpbicomiVD 42873. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) | ||
Theorem | bi1imp 42496 | Importation inference similar to imp 408, except the outermost implication of the hypothesis is a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 ↔ (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | bi2imp 42497 | Importation inference similar to imp 408, except both implications of the hypothesis are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 ↔ (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | bi3impb 42498 | Similar to 3impb 1116 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi3impa 42499 | Similar to 3impa 1111 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi23impib 42500 | 3impib 1117 with the inner implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |