Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exfinfldd Structured version   Visualization version   GIF version

Theorem exfinfldd 42176
Description: For any prime 𝑃 and any positive integer 𝑁 there exists a field 𝑘 such that 𝑘 contains 𝑃𝑁 elements. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
exfinfldd.1 (𝜑𝑃 ∈ ℙ)
exfinfldd.2 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
exfinfldd (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem exfinfldd
Dummy variables 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . 5 (𝑛 = 𝑁 → (𝑃𝑛) = (𝑃𝑁))
21eqeq2d 2740 . . . 4 (𝑛 = 𝑁 → ((♯‘(Base‘𝑘)) = (𝑃𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃𝑁)))
32anbi1d 631 . . 3 (𝑛 = 𝑁 → (((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃)))
43rexbidv 3153 . 2 (𝑛 = 𝑁 → (∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃)))
5 oveq1 7360 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑛) = (𝑃𝑛))
65eqeq2d 2740 . . . . . 6 (𝑝 = 𝑃 → ((♯‘(Base‘𝑘)) = (𝑝𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃𝑛)))
7 eqeq2 2741 . . . . . 6 (𝑝 = 𝑃 → ((chr‘𝑘) = 𝑝 ↔ (chr‘𝑘) = 𝑃))
86, 7anbi12d 632 . . . . 5 (𝑝 = 𝑃 → (((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
98rexbidv 3153 . . . 4 (𝑝 = 𝑃 → (∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
109ralbidv 3152 . . 3 (𝑝 = 𝑃 → (∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
11 ax-exfinfld 42175 . . . 4 𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
1211a1i 11 . . 3 (𝜑 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝))
13 exfinfldd.1 . . 3 (𝜑𝑃 ∈ ℙ)
1410, 12, 13rspcdva 3580 . 2 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃))
15 exfinfldd.2 . 2 (𝜑𝑁 ∈ ℕ)
164, 14, 15rspcdva 3580 1 (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cfv 6486  (class class class)co 7353  cn 12146  cexp 13986  chash 14255  cprime 16600  Basecbs 17138  Fieldcfield 20633  chrcchr 21426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-exfinfld 42175
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356
This theorem is referenced by:  aks5  42177
  Copyright terms: Public domain W3C validator