Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exfinfldd Structured version   Visualization version   GIF version

Theorem exfinfldd 42160
Description: For any prime 𝑃 and any positive integer 𝑁 there exists a field 𝑘 such that 𝑘 contains 𝑃𝑁 elements. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
exfinfldd.1 (𝜑𝑃 ∈ ℙ)
exfinfldd.2 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
exfinfldd (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem exfinfldd
Dummy variables 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . 5 (𝑛 = 𝑁 → (𝑃𝑛) = (𝑃𝑁))
21eqeq2d 2751 . . . 4 (𝑛 = 𝑁 → ((♯‘(Base‘𝑘)) = (𝑃𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃𝑁)))
32anbi1d 630 . . 3 (𝑛 = 𝑁 → (((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃)))
43rexbidv 3185 . 2 (𝑛 = 𝑁 → (∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃)))
5 oveq1 7455 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑛) = (𝑃𝑛))
65eqeq2d 2751 . . . . . 6 (𝑝 = 𝑃 → ((♯‘(Base‘𝑘)) = (𝑝𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃𝑛)))
7 eqeq2 2752 . . . . . 6 (𝑝 = 𝑃 → ((chr‘𝑘) = 𝑝 ↔ (chr‘𝑘) = 𝑃))
86, 7anbi12d 631 . . . . 5 (𝑝 = 𝑃 → (((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
98rexbidv 3185 . . . 4 (𝑝 = 𝑃 → (∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
109ralbidv 3184 . . 3 (𝑝 = 𝑃 → (∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
11 ax-exfinfld 42159 . . . 4 𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
1211a1i 11 . . 3 (𝜑 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝))
13 exfinfldd.1 . . 3 (𝜑𝑃 ∈ ℙ)
1410, 12, 13rspcdva 3636 . 2 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃))
15 exfinfldd.2 . 2 (𝜑𝑁 ∈ ℕ)
164, 14, 15rspcdva 3636 1 (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cfv 6573  (class class class)co 7448  cn 12293  cexp 14112  chash 14379  cprime 16718  Basecbs 17258  Fieldcfield 20752  chrcchr 21535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-exfinfld 42159
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  aks5  42161
  Copyright terms: Public domain W3C validator