Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exfinfldd Structured version   Visualization version   GIF version

Theorem exfinfldd 42185
Description: For any prime 𝑃 and any positive integer 𝑁 there exists a field 𝑘 such that 𝑘 contains 𝑃𝑁 elements. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
exfinfldd.1 (𝜑𝑃 ∈ ℙ)
exfinfldd.2 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
exfinfldd (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem exfinfldd
Dummy variables 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑛 = 𝑁 → (𝑃𝑛) = (𝑃𝑁))
21eqeq2d 2746 . . . 4 (𝑛 = 𝑁 → ((♯‘(Base‘𝑘)) = (𝑃𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃𝑁)))
32anbi1d 631 . . 3 (𝑛 = 𝑁 → (((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃)))
43rexbidv 3177 . 2 (𝑛 = 𝑁 → (∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃)))
5 oveq1 7438 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑛) = (𝑃𝑛))
65eqeq2d 2746 . . . . . 6 (𝑝 = 𝑃 → ((♯‘(Base‘𝑘)) = (𝑝𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃𝑛)))
7 eqeq2 2747 . . . . . 6 (𝑝 = 𝑃 → ((chr‘𝑘) = 𝑝 ↔ (chr‘𝑘) = 𝑃))
86, 7anbi12d 632 . . . . 5 (𝑝 = 𝑃 → (((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
98rexbidv 3177 . . . 4 (𝑝 = 𝑃 → (∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
109ralbidv 3176 . . 3 (𝑝 = 𝑃 → (∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
11 ax-exfinfld 42184 . . . 4 𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
1211a1i 11 . . 3 (𝜑 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝))
13 exfinfldd.1 . . 3 (𝜑𝑃 ∈ ℙ)
1410, 12, 13rspcdva 3623 . 2 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃))
15 exfinfldd.2 . 2 (𝜑𝑁 ∈ ℕ)
164, 14, 15rspcdva 3623 1 (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cfv 6563  (class class class)co 7431  cn 12264  cexp 14099  chash 14366  cprime 16705  Basecbs 17245  Fieldcfield 20747  chrcchr 21530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-exfinfld 42184
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  aks5  42186
  Copyright terms: Public domain W3C validator