Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exfinfldd Structured version   Visualization version   GIF version

Theorem exfinfldd 42316
Description: For any prime 𝑃 and any positive integer 𝑁 there exists a field 𝑘 such that 𝑘 contains 𝑃𝑁 elements. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
exfinfldd.1 (𝜑𝑃 ∈ ℙ)
exfinfldd.2 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
exfinfldd (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem exfinfldd
Dummy variables 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . . . 5 (𝑛 = 𝑁 → (𝑃𝑛) = (𝑃𝑁))
21eqeq2d 2744 . . . 4 (𝑛 = 𝑁 → ((♯‘(Base‘𝑘)) = (𝑃𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃𝑁)))
32anbi1d 631 . . 3 (𝑛 = 𝑁 → (((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃)))
43rexbidv 3157 . 2 (𝑛 = 𝑁 → (∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃)))
5 oveq1 7359 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑛) = (𝑃𝑛))
65eqeq2d 2744 . . . . . 6 (𝑝 = 𝑃 → ((♯‘(Base‘𝑘)) = (𝑝𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃𝑛)))
7 eqeq2 2745 . . . . . 6 (𝑝 = 𝑃 → ((chr‘𝑘) = 𝑝 ↔ (chr‘𝑘) = 𝑃))
86, 7anbi12d 632 . . . . 5 (𝑝 = 𝑃 → (((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
98rexbidv 3157 . . . 4 (𝑝 = 𝑃 → (∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
109ralbidv 3156 . . 3 (𝑝 = 𝑃 → (∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
11 ax-exfinfld 42315 . . . 4 𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
1211a1i 11 . . 3 (𝜑 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝))
13 exfinfldd.1 . . 3 (𝜑𝑃 ∈ ℙ)
1410, 12, 13rspcdva 3574 . 2 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃))
15 exfinfldd.2 . 2 (𝜑𝑁 ∈ ℕ)
164, 14, 15rspcdva 3574 1 (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  cfv 6486  (class class class)co 7352  cn 12132  cexp 13970  chash 14239  cprime 16584  Basecbs 17122  Fieldcfield 20647  chrcchr 21440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-exfinfld 42315
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355
This theorem is referenced by:  aks5  42317
  Copyright terms: Public domain W3C validator