Step | Hyp | Ref
| Expression |
1 | | oveq2 7456 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑃↑𝑛) = (𝑃↑𝑁)) |
2 | 1 | eqeq2d 2751 |
. . . 4
⊢ (𝑛 = 𝑁 → ((♯‘(Base‘𝑘)) = (𝑃↑𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃↑𝑁))) |
3 | 2 | anbi1d 630 |
. . 3
⊢ (𝑛 = 𝑁 → (((♯‘(Base‘𝑘)) = (𝑃↑𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ((♯‘(Base‘𝑘)) = (𝑃↑𝑁) ∧ (chr‘𝑘) = 𝑃))) |
4 | 3 | rexbidv 3185 |
. 2
⊢ (𝑛 = 𝑁 → (∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑃↑𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑃↑𝑁) ∧ (chr‘𝑘) = 𝑃))) |
5 | | oveq1 7455 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑝↑𝑛) = (𝑃↑𝑛)) |
6 | 5 | eqeq2d 2751 |
. . . . . 6
⊢ (𝑝 = 𝑃 → ((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃↑𝑛))) |
7 | | eqeq2 2752 |
. . . . . 6
⊢ (𝑝 = 𝑃 → ((chr‘𝑘) = 𝑝 ↔ (chr‘𝑘) = 𝑃)) |
8 | 6, 7 | anbi12d 631 |
. . . . 5
⊢ (𝑝 = 𝑃 → (((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ((♯‘(Base‘𝑘)) = (𝑃↑𝑛) ∧ (chr‘𝑘) = 𝑃))) |
9 | 8 | rexbidv 3185 |
. . . 4
⊢ (𝑝 = 𝑃 → (∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑃↑𝑛) ∧ (chr‘𝑘) = 𝑃))) |
10 | 9 | ralbidv 3184 |
. . 3
⊢ (𝑝 = 𝑃 → (∀𝑛 ∈ ℕ ∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑃↑𝑛) ∧ (chr‘𝑘) = 𝑃))) |
11 | | ax-exfinfld 42159 |
. . . 4
⊢
∀𝑝 ∈
ℙ ∀𝑛 ∈
ℕ ∃𝑘 ∈
Field ((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) |
12 | 11 | a1i 11 |
. . 3
⊢ (𝜑 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝)) |
13 | | exfinfldd.1 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
14 | 10, 12, 13 | rspcdva 3636 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑃↑𝑛) ∧ (chr‘𝑘) = 𝑃)) |
15 | | exfinfldd.2 |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
16 | 4, 14, 15 | rspcdva 3636 |
1
⊢ (𝜑 → ∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑃↑𝑁) ∧ (chr‘𝑘) = 𝑃)) |