Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exfinfldd Structured version   Visualization version   GIF version

Theorem exfinfldd 42235
Description: For any prime 𝑃 and any positive integer 𝑁 there exists a field 𝑘 such that 𝑘 contains 𝑃𝑁 elements. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
exfinfldd.1 (𝜑𝑃 ∈ ℙ)
exfinfldd.2 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
exfinfldd (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem exfinfldd
Dummy variables 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . 5 (𝑛 = 𝑁 → (𝑃𝑛) = (𝑃𝑁))
21eqeq2d 2742 . . . 4 (𝑛 = 𝑁 → ((♯‘(Base‘𝑘)) = (𝑃𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃𝑁)))
32anbi1d 631 . . 3 (𝑛 = 𝑁 → (((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃)))
43rexbidv 3156 . 2 (𝑛 = 𝑁 → (∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃) ↔ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃)))
5 oveq1 7353 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑛) = (𝑃𝑛))
65eqeq2d 2742 . . . . . 6 (𝑝 = 𝑃 → ((♯‘(Base‘𝑘)) = (𝑝𝑛) ↔ (♯‘(Base‘𝑘)) = (𝑃𝑛)))
7 eqeq2 2743 . . . . . 6 (𝑝 = 𝑃 → ((chr‘𝑘) = 𝑝 ↔ (chr‘𝑘) = 𝑃))
86, 7anbi12d 632 . . . . 5 (𝑝 = 𝑃 → (((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
98rexbidv 3156 . . . 4 (𝑝 = 𝑃 → (∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
109ralbidv 3155 . . 3 (𝑝 = 𝑃 → (∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝) ↔ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃)))
11 ax-exfinfld 42234 . . . 4 𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
1211a1i 11 . . 3 (𝜑 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝))
13 exfinfldd.1 . . 3 (𝜑𝑃 ∈ ℙ)
1410, 12, 13rspcdva 3578 . 2 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑛) ∧ (chr‘𝑘) = 𝑃))
15 exfinfldd.2 . 2 (𝜑𝑁 ∈ ℕ)
164, 14, 15rspcdva 3578 1 (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cfv 6481  (class class class)co 7346  cn 12122  cexp 13965  chash 14234  cprime 16579  Basecbs 17117  Fieldcfield 20643  chrcchr 21436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-exfinfld 42234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  aks5  42236
  Copyright terms: Public domain W3C validator