Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5lem8 Structured version   Visualization version   GIF version

Theorem aks5lem8 42196
Description: Lemma for aks5. Clean up the conclusion. (Contributed by metakunt, 9-Aug-2025.)
Hypotheses
Ref Expression
aks5lem7.1 (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ)
aks5lem7.2 𝑃 = (chr‘𝐾)
aks5lem7.3 (𝜑𝐾 ∈ Field)
aks5lem7.4 (𝜑𝑃 ∈ ℙ)
aks5lem7.5 (𝜑𝑅 ∈ ℕ)
aks5lem7.6 (𝜑𝑁 ∈ (ℤ‘3))
aks5lem7.7 (𝜑𝑃𝑁)
aks5lem7.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks5lem7.9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks5lem7.10 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks5lem7.11 (𝜑𝑅 ∥ ((♯‘(Base‘𝐾)) − 1))
aks5lem7.12 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
aks5lem7.13 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks5lem7.14 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
aks5lem7.15 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})
aks5lem7.16 𝑋 = (var1‘(ℤ/nℤ‘𝑁))
Assertion
Ref Expression
aks5lem8 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
Distinct variable groups:   𝐴,𝑎   𝐴,𝑏   𝐾,𝑎   𝐾,𝑏   𝑁,𝑎   𝑁,𝑏   𝑃,𝑎   𝑃,𝑏   𝑅,𝑎   𝑅,𝑏   𝜑,𝑎   𝜑,𝑏   𝑛,𝑁,𝑝   𝑃,𝑛,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑛,𝑝)   𝑅(𝑛,𝑝)   𝑆(𝑛,𝑝,𝑎,𝑏)   𝐾(𝑛,𝑝)   𝐿(𝑛,𝑝,𝑎,𝑏)   𝑋(𝑛,𝑝,𝑎,𝑏)

Proof of Theorem aks5lem8
StepHypRef Expression
1 aks5lem7.4 . 2 (𝜑𝑃 ∈ ℙ)
2 simpr 484 . . . . 5 ((𝜑𝑝 = 𝑃) → 𝑝 = 𝑃)
32oveq1d 7405 . . . 4 ((𝜑𝑝 = 𝑃) → (𝑝𝑛) = (𝑃𝑛))
43eqeq2d 2741 . . 3 ((𝜑𝑝 = 𝑃) → (𝑁 = (𝑝𝑛) ↔ 𝑁 = (𝑃𝑛)))
54rexbidv 3158 . 2 ((𝜑𝑝 = 𝑃) → (∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛) ↔ ∃𝑛 ∈ ℕ 𝑁 = (𝑃𝑛)))
6 aks5lem7.1 . . . . 5 (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ)
7 aks5lem7.2 . . . . 5 𝑃 = (chr‘𝐾)
8 aks5lem7.3 . . . . 5 (𝜑𝐾 ∈ Field)
9 aks5lem7.5 . . . . 5 (𝜑𝑅 ∈ ℕ)
10 aks5lem7.6 . . . . 5 (𝜑𝑁 ∈ (ℤ‘3))
11 aks5lem7.7 . . . . 5 (𝜑𝑃𝑁)
12 aks5lem7.8 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
13 aks5lem7.9 . . . . 5 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
14 aks5lem7.10 . . . . 5 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
15 aks5lem7.11 . . . . 5 (𝜑𝑅 ∥ ((♯‘(Base‘𝐾)) − 1))
16 aks5lem7.12 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
17 aks5lem7.13 . . . . 5 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
18 aks5lem7.14 . . . . 5 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
19 aks5lem7.15 . . . . 5 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})
20 aks5lem7.16 . . . . 5 𝑋 = (var1‘(ℤ/nℤ‘𝑁))
216, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20aks5lem7 42195 . . . 4 (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
22 eluzelz 12810 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
2310, 22syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
24 0red 11184 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
25 3re 12273 . . . . . . . . 9 3 ∈ ℝ
2625a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
2723zred 12645 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
28 3pos 12298 . . . . . . . . 9 0 < 3
2928a1i 11 . . . . . . . 8 (𝜑 → 0 < 3)
30 eluzle 12813 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
3110, 30syl 17 . . . . . . . 8 (𝜑 → 3 ≤ 𝑁)
3224, 26, 27, 29, 31ltletrd 11341 . . . . . . 7 (𝜑 → 0 < 𝑁)
3323, 32jca 511 . . . . . 6 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
34 elnnz 12546 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
3533, 34sylibr 234 . . . . 5 (𝜑𝑁 ∈ ℕ)
36 pcprmpw 16861 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))))
371, 35, 36syl2anc 584 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))))
3821, 37mpbird 257 . . 3 (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 = (𝑃𝑛))
39 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 𝑛 ∈ ℕ0)
4039nn0zd 12562 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 𝑛 ∈ ℤ)
41 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 0 < 𝑛) → 0 < 𝑛)
4239nn0red 12511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 𝑛 ∈ ℝ)
43 0red 11184 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 0 ∈ ℝ)
4442, 43lenltd 11327 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (𝑛 ≤ 0 ↔ ¬ 0 < 𝑛))
4544bicomd 223 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (¬ 0 < 𝑛𝑛 ≤ 0))
4645biimpd 229 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (¬ 0 < 𝑛𝑛 ≤ 0))
4746imp 406 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ ¬ 0 < 𝑛) → 𝑛 ≤ 0)
48 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ≤ 0)
4939adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ∈ ℕ0)
50 nn0le0eq0 12477 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑛 ≤ 0 ↔ 𝑛 = 0))
5150bicomd 223 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 = 0 ↔ 𝑛 ≤ 0))
5249, 51syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 ↔ 𝑛 ≤ 0))
5348, 52mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 = 0)
54 simplrr 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑁 = (𝑃𝑛))
55 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑛 = 0)
5655oveq2d 7406 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → (𝑃𝑛) = (𝑃↑0))
571ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℙ)
58 prmnn 16651 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5957, 58syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℕ)
6059nncnd 12209 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℂ)
6160exp0d 14112 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → (𝑃↑0) = 1)
6256, 61eqtrd 2765 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → (𝑃𝑛) = 1)
6354, 62eqtrd 2765 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑁 = 1)
64 1red 11182 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 1 ∈ ℝ)
65 1red 11182 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
6635nnred 12208 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
67 1lt3 12361 . . . . . . . . . . . . . . . . . . . 20 1 < 3
6867a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 < 3)
6965, 26, 66, 68, 31ltletrd 11341 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 𝑁)
7069adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 1 < 𝑁)
7170adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 1 < 𝑁)
7264, 71ltned 11317 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 1 ≠ 𝑁)
7372necomd 2981 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑁 ≠ 1)
7473neneqd 2931 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → ¬ 𝑁 = 1)
7563, 74pm2.21dd 195 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 0 < 𝑛)
7675ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (𝑛 = 0 → 0 < 𝑛))
7776adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 → 0 < 𝑛))
7853, 77mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → 0 < 𝑛)
7978ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (𝑛 ≤ 0 → 0 < 𝑛))
8079adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ ¬ 0 < 𝑛) → (𝑛 ≤ 0 → 0 < 𝑛))
8147, 80mpd 15 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ ¬ 0 < 𝑛) → 0 < 𝑛)
8241, 81pm2.61dan 812 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 0 < 𝑛)
8340, 82jca 511 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (𝑛 ∈ ℤ ∧ 0 < 𝑛))
84 elnnz 12546 . . . 4 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
8583, 84sylibr 234 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 𝑛 ∈ ℕ)
86 simprr 772 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 𝑁 = (𝑃𝑛))
8738, 85, 86reximssdv 3152 . 2 (𝜑 → ∃𝑛 ∈ ℕ 𝑁 = (𝑃𝑛))
881, 5, 87rspcedvd 3593 1 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  [cec 8672  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216  cmin 11412  cn 12193  2c2 12248  3c3 12249  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  cfl 13759  cexp 14033  chash 14302  csqrt 15206  cdvds 16229   gcd cgcd 16471  cprime 16648  odcodz 16740  ϕcphi 16741   pCnt cpc 16814  Basecbs 17186  +gcplusg 17227  -gcsg 18874  .gcmg 19006   ~QG cqg 19061  mulGrpcmgp 20056  1rcur 20097  Fieldcfield 20646  RSpancrsp 21124  ℤRHomczrh 21416  chrcchr 21418  ℤ/nczn 21419  var1cv1 22067  Poly1cpl1 22068   logb clogb 26681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-fallfac 15980  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-odz 16742  df-phi 16743  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-pws 17419  df-xrs 17472  df-qtop 17477  df-imas 17478  df-qus 17479  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-gim 19198  df-cntz 19256  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-rim 20389  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-chr 21422  df-zn 21423  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-log 26472  df-cxp 26473  df-logb 26682  df-primroots 42087
This theorem is referenced by:  aks5  42199
  Copyright terms: Public domain W3C validator