| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for aks5. Clean up the conclusion. (Contributed by metakunt, 9-Aug-2025.) |
| Ref | Expression |
|---|---|
| aks5lem7.1 | ⊢ (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ) |
| aks5lem7.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks5lem7.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks5lem7.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks5lem7.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks5lem7.6 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks5lem7.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks5lem7.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks5lem7.9 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks5lem7.10 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks5lem7.11 | ⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) |
| aks5lem7.12 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| aks5lem7.13 | ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
| aks5lem7.14 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
| aks5lem7.15 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) |
| aks5lem7.16 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
| Ref | Expression |
|---|---|
| aks5lem8 | ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks5lem7.4 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
| 3 | 2 | oveq1d 7370 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (𝑝↑𝑛) = (𝑃↑𝑛)) |
| 4 | 3 | eqeq2d 2744 | . . 3 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (𝑁 = (𝑝↑𝑛) ↔ 𝑁 = (𝑃↑𝑛))) |
| 5 | 4 | rexbidv 3158 | . 2 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛) ↔ ∃𝑛 ∈ ℕ 𝑁 = (𝑃↑𝑛))) |
| 6 | aks5lem7.1 | . . . . 5 ⊢ (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ) | |
| 7 | aks5lem7.2 | . . . . 5 ⊢ 𝑃 = (chr‘𝐾) | |
| 8 | aks5lem7.3 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 9 | aks5lem7.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 10 | aks5lem7.6 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 11 | aks5lem7.7 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 12 | aks5lem7.8 | . . . . 5 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 13 | aks5lem7.9 | . . . . 5 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 14 | aks5lem7.10 | . . . . 5 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 15 | aks5lem7.11 | . . . . 5 ⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) | |
| 16 | aks5lem7.12 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 17 | aks5lem7.13 | . . . . 5 ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | |
| 18 | aks5lem7.14 | . . . . 5 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 19 | aks5lem7.15 | . . . . 5 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) | |
| 20 | aks5lem7.16 | . . . . 5 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
| 21 | 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | aks5lem7 42303 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |
| 22 | eluzelz 12752 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 23 | 10, 22 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | 0red 11125 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 25 | 3re 12215 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 3 ∈ ℝ) |
| 27 | 23 | zred 12587 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 28 | 3pos 12240 | . . . . . . . . 9 ⊢ 0 < 3 | |
| 29 | 28 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 < 3) |
| 30 | eluzle 12755 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ≤ 𝑁) | |
| 31 | 10, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 3 ≤ 𝑁) |
| 32 | 24, 26, 27, 29, 31 | ltletrd 11283 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 33 | 23, 32 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
| 34 | elnnz 12488 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | |
| 35 | 33, 34 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 36 | pcprmpw 16805 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))) | |
| 37 | 1, 35, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))) |
| 38 | 21, 37 | mpbird 257 | . . 3 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛)) |
| 39 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℕ0) | |
| 40 | 39 | nn0zd 12504 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℤ) |
| 41 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 0 < 𝑛) → 0 < 𝑛) | |
| 42 | 39 | nn0red 12453 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℝ) |
| 43 | 0red 11125 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 0 ∈ ℝ) | |
| 44 | 42, 43 | lenltd 11269 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ≤ 0 ↔ ¬ 0 < 𝑛)) |
| 45 | 44 | bicomd 223 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (¬ 0 < 𝑛 ↔ 𝑛 ≤ 0)) |
| 46 | 45 | biimpd 229 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (¬ 0 < 𝑛 → 𝑛 ≤ 0)) |
| 47 | 46 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → 𝑛 ≤ 0) |
| 48 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ≤ 0) | |
| 49 | 39 | adantr 480 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ∈ ℕ0) |
| 50 | nn0le0eq0 12419 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ0 → (𝑛 ≤ 0 ↔ 𝑛 = 0)) | |
| 51 | 50 | bicomd 223 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ0 → (𝑛 = 0 ↔ 𝑛 ≤ 0)) |
| 52 | 49, 51 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 ↔ 𝑛 ≤ 0)) |
| 53 | 48, 52 | mpbird 257 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 = 0) |
| 54 | simplrr 777 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 = (𝑃↑𝑛)) | |
| 55 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑛 = 0) | |
| 56 | 55 | oveq2d 7371 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑𝑛) = (𝑃↑0)) |
| 57 | 1 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℙ) |
| 58 | prmnn 16595 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 59 | 57, 58 | syl 17 | . . . . . . . . . . . . . . . . 17 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℕ) |
| 60 | 59 | nncnd 12151 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℂ) |
| 61 | 60 | exp0d 14057 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑0) = 1) |
| 62 | 56, 61 | eqtrd 2768 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑𝑛) = 1) |
| 63 | 54, 62 | eqtrd 2768 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 = 1) |
| 64 | 1red 11123 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 ∈ ℝ) | |
| 65 | 1red 11123 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 66 | 35 | nnred 12150 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 67 | 1lt3 12303 | . . . . . . . . . . . . . . . . . . . 20 ⊢ 1 < 3 | |
| 68 | 67 | a1i 11 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 1 < 3) |
| 69 | 65, 26, 66, 68, 31 | ltletrd 11283 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝜑 → 1 < 𝑁) |
| 70 | 69 | adantr 480 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 1 < 𝑁) |
| 71 | 70 | adantr 480 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 < 𝑁) |
| 72 | 64, 71 | ltned 11259 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 ≠ 𝑁) |
| 73 | 72 | necomd 2985 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 ≠ 1) |
| 74 | 73 | neneqd 2935 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → ¬ 𝑁 = 1) |
| 75 | 63, 74 | pm2.21dd 195 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 0 < 𝑛) |
| 76 | 75 | ex 412 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 = 0 → 0 < 𝑛)) |
| 77 | 76 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 → 0 < 𝑛)) |
| 78 | 53, 77 | mpd 15 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 0 < 𝑛) |
| 79 | 78 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ≤ 0 → 0 < 𝑛)) |
| 80 | 79 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → (𝑛 ≤ 0 → 0 < 𝑛)) |
| 81 | 47, 80 | mpd 15 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → 0 < 𝑛) |
| 82 | 41, 81 | pm2.61dan 812 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 0 < 𝑛) |
| 83 | 40, 82 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ∈ ℤ ∧ 0 < 𝑛)) |
| 84 | elnnz 12488 | . . . 4 ⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛)) | |
| 85 | 83, 84 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℕ) |
| 86 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑁 = (𝑃↑𝑛)) | |
| 87 | 38, 85, 86 | reximssdv 3152 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝑁 = (𝑃↑𝑛)) |
| 88 | 1, 5, 87 | rspcedvd 3576 | 1 ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 {csn 4577 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 [cec 8629 ℝcr 11015 0cc0 11016 1c1 11017 · cmul 11021 < clt 11156 ≤ cle 11157 − cmin 11354 ℕcn 12135 2c2 12190 3c3 12191 ℕ0cn0 12391 ℤcz 12478 ℤ≥cuz 12742 ...cfz 13417 ⌊cfl 13704 ↑cexp 13978 ♯chash 14247 √csqrt 15150 ∥ cdvds 16173 gcd cgcd 16415 ℙcprime 16592 odℤcodz 16684 ϕcphi 16685 pCnt cpc 16758 Basecbs 17130 +gcplusg 17171 -gcsg 18858 .gcmg 18990 ~QG cqg 19045 mulGrpcmgp 20068 1rcur 20109 Fieldcfield 20655 RSpancrsp 21154 ℤRHomczrh 21446 chrcchr 21448 ℤ/nℤczn 21449 var1cv1 22098 Poly1cpl1 22099 logb clogb 26711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-pm 8762 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9406 df-dju 9804 df-card 9842 df-acn 9845 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-xnn0 12465 df-z 12479 df-dec 12599 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ioo 13259 df-ioc 13260 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-fac 14191 df-bc 14220 df-hash 14248 df-shft 14984 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-limsup 15388 df-clim 15405 df-rlim 15406 df-sum 15604 df-prod 15821 df-fallfac 15924 df-ef 15984 df-sin 15986 df-cos 15987 df-pi 15989 df-dvds 16174 df-gcd 16416 df-prm 16593 df-odz 16686 df-phi 16687 df-pc 16759 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-rest 17336 df-topn 17337 df-0g 17355 df-gsum 17356 df-topgen 17357 df-pt 17358 df-prds 17361 df-pws 17363 df-xrs 17416 df-qtop 17421 df-imas 17422 df-qus 17423 df-xps 17424 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-nsg 19047 df-eqg 19048 df-ghm 19135 df-gim 19181 df-cntz 19239 df-od 19450 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-srg 20115 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-rhm 20400 df-rim 20401 df-nzr 20438 df-subrng 20471 df-subrg 20495 df-rlreg 20619 df-domn 20620 df-idom 20621 df-drng 20656 df-field 20657 df-lmod 20805 df-lss 20875 df-lsp 20915 df-sra 21117 df-rgmod 21118 df-lidl 21155 df-rsp 21156 df-2idl 21197 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-fbas 21298 df-fg 21299 df-cnfld 21302 df-zring 21394 df-zrh 21450 df-chr 21452 df-zn 21453 df-assa 21800 df-asp 21801 df-ascl 21802 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22019 df-evl 22020 df-psr1 22102 df-vr1 22103 df-ply1 22104 df-coe1 22105 df-evls1 22240 df-evl1 22241 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-lp 23061 df-perf 23062 df-cn 23152 df-cnp 23153 df-haus 23240 df-tx 23487 df-hmeo 23680 df-fil 23771 df-fm 23863 df-flim 23864 df-flf 23865 df-xms 24245 df-ms 24246 df-tms 24247 df-cncf 24808 df-limc 25804 df-dv 25805 df-mdeg 25997 df-deg1 25998 df-mon1 26073 df-uc1p 26074 df-q1p 26075 df-r1p 26076 df-log 26502 df-cxp 26503 df-logb 26712 df-primroots 42195 |
| This theorem is referenced by: aks5 42307 |
| Copyright terms: Public domain | W3C validator |