| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for aks5. Clean up the conclusion. (Contributed by metakunt, 9-Aug-2025.) |
| Ref | Expression |
|---|---|
| aks5lem7.1 | ⊢ (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ) |
| aks5lem7.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks5lem7.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks5lem7.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks5lem7.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks5lem7.6 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks5lem7.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks5lem7.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks5lem7.9 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks5lem7.10 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks5lem7.11 | ⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) |
| aks5lem7.12 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| aks5lem7.13 | ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
| aks5lem7.14 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
| aks5lem7.15 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) |
| aks5lem7.16 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
| Ref | Expression |
|---|---|
| aks5lem8 | ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks5lem7.4 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
| 3 | 2 | oveq1d 7356 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (𝑝↑𝑛) = (𝑃↑𝑛)) |
| 4 | 3 | eqeq2d 2741 | . . 3 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (𝑁 = (𝑝↑𝑛) ↔ 𝑁 = (𝑃↑𝑛))) |
| 5 | 4 | rexbidv 3154 | . 2 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛) ↔ ∃𝑛 ∈ ℕ 𝑁 = (𝑃↑𝑛))) |
| 6 | aks5lem7.1 | . . . . 5 ⊢ (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ) | |
| 7 | aks5lem7.2 | . . . . 5 ⊢ 𝑃 = (chr‘𝐾) | |
| 8 | aks5lem7.3 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 9 | aks5lem7.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 10 | aks5lem7.6 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 11 | aks5lem7.7 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 12 | aks5lem7.8 | . . . . 5 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 13 | aks5lem7.9 | . . . . 5 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 14 | aks5lem7.10 | . . . . 5 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 15 | aks5lem7.11 | . . . . 5 ⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) | |
| 16 | aks5lem7.12 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 17 | aks5lem7.13 | . . . . 5 ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | |
| 18 | aks5lem7.14 | . . . . 5 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 19 | aks5lem7.15 | . . . . 5 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) | |
| 20 | aks5lem7.16 | . . . . 5 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
| 21 | 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | aks5lem7 42212 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |
| 22 | eluzelz 12734 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 23 | 10, 22 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | 0red 11107 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 25 | 3re 12197 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 3 ∈ ℝ) |
| 27 | 23 | zred 12569 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 28 | 3pos 12222 | . . . . . . . . 9 ⊢ 0 < 3 | |
| 29 | 28 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 < 3) |
| 30 | eluzle 12737 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ≤ 𝑁) | |
| 31 | 10, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 3 ≤ 𝑁) |
| 32 | 24, 26, 27, 29, 31 | ltletrd 11265 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 33 | 23, 32 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
| 34 | elnnz 12470 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | |
| 35 | 33, 34 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 36 | pcprmpw 16787 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))) | |
| 37 | 1, 35, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))) |
| 38 | 21, 37 | mpbird 257 | . . 3 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛)) |
| 39 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℕ0) | |
| 40 | 39 | nn0zd 12486 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℤ) |
| 41 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 0 < 𝑛) → 0 < 𝑛) | |
| 42 | 39 | nn0red 12435 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℝ) |
| 43 | 0red 11107 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 0 ∈ ℝ) | |
| 44 | 42, 43 | lenltd 11251 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ≤ 0 ↔ ¬ 0 < 𝑛)) |
| 45 | 44 | bicomd 223 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (¬ 0 < 𝑛 ↔ 𝑛 ≤ 0)) |
| 46 | 45 | biimpd 229 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (¬ 0 < 𝑛 → 𝑛 ≤ 0)) |
| 47 | 46 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → 𝑛 ≤ 0) |
| 48 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ≤ 0) | |
| 49 | 39 | adantr 480 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ∈ ℕ0) |
| 50 | nn0le0eq0 12401 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ0 → (𝑛 ≤ 0 ↔ 𝑛 = 0)) | |
| 51 | 50 | bicomd 223 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ0 → (𝑛 = 0 ↔ 𝑛 ≤ 0)) |
| 52 | 49, 51 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 ↔ 𝑛 ≤ 0)) |
| 53 | 48, 52 | mpbird 257 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 = 0) |
| 54 | simplrr 777 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 = (𝑃↑𝑛)) | |
| 55 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑛 = 0) | |
| 56 | 55 | oveq2d 7357 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑𝑛) = (𝑃↑0)) |
| 57 | 1 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℙ) |
| 58 | prmnn 16577 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 59 | 57, 58 | syl 17 | . . . . . . . . . . . . . . . . 17 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℕ) |
| 60 | 59 | nncnd 12133 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℂ) |
| 61 | 60 | exp0d 14039 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑0) = 1) |
| 62 | 56, 61 | eqtrd 2765 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑𝑛) = 1) |
| 63 | 54, 62 | eqtrd 2765 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 = 1) |
| 64 | 1red 11105 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 ∈ ℝ) | |
| 65 | 1red 11105 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 66 | 35 | nnred 12132 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 67 | 1lt3 12285 | . . . . . . . . . . . . . . . . . . . 20 ⊢ 1 < 3 | |
| 68 | 67 | a1i 11 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 1 < 3) |
| 69 | 65, 26, 66, 68, 31 | ltletrd 11265 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝜑 → 1 < 𝑁) |
| 70 | 69 | adantr 480 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 1 < 𝑁) |
| 71 | 70 | adantr 480 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 < 𝑁) |
| 72 | 64, 71 | ltned 11241 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 ≠ 𝑁) |
| 73 | 72 | necomd 2981 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 ≠ 1) |
| 74 | 73 | neneqd 2931 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → ¬ 𝑁 = 1) |
| 75 | 63, 74 | pm2.21dd 195 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 0 < 𝑛) |
| 76 | 75 | ex 412 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 = 0 → 0 < 𝑛)) |
| 77 | 76 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 → 0 < 𝑛)) |
| 78 | 53, 77 | mpd 15 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 0 < 𝑛) |
| 79 | 78 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ≤ 0 → 0 < 𝑛)) |
| 80 | 79 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → (𝑛 ≤ 0 → 0 < 𝑛)) |
| 81 | 47, 80 | mpd 15 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → 0 < 𝑛) |
| 82 | 41, 81 | pm2.61dan 812 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 0 < 𝑛) |
| 83 | 40, 82 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ∈ ℤ ∧ 0 < 𝑛)) |
| 84 | elnnz 12470 | . . . 4 ⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛)) | |
| 85 | 83, 84 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℕ) |
| 86 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑁 = (𝑃↑𝑛)) | |
| 87 | 38, 85, 86 | reximssdv 3148 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝑁 = (𝑃↑𝑛)) |
| 88 | 1, 5, 87 | rspcedvd 3577 | 1 ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 {csn 4574 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 [cec 8615 ℝcr 10997 0cc0 10998 1c1 10999 · cmul 11003 < clt 11138 ≤ cle 11139 − cmin 11336 ℕcn 12117 2c2 12172 3c3 12173 ℕ0cn0 12373 ℤcz 12460 ℤ≥cuz 12724 ...cfz 13399 ⌊cfl 13686 ↑cexp 13960 ♯chash 14229 √csqrt 15132 ∥ cdvds 16155 gcd cgcd 16397 ℙcprime 16574 odℤcodz 16666 ϕcphi 16667 pCnt cpc 16740 Basecbs 17112 +gcplusg 17153 -gcsg 18840 .gcmg 18972 ~QG cqg 19027 mulGrpcmgp 20051 1rcur 20092 Fieldcfield 20638 RSpancrsp 21137 ℤRHomczrh 21429 chrcchr 21431 ℤ/nℤczn 21432 var1cv1 22081 Poly1cpl1 22082 logb clogb 26694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9786 df-card 9824 df-acn 9827 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ioc 13242 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-fac 14173 df-bc 14202 df-hash 14230 df-shft 14966 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 df-clim 15387 df-rlim 15388 df-sum 15586 df-prod 15803 df-fallfac 15906 df-ef 15966 df-sin 15968 df-cos 15969 df-pi 15971 df-dvds 16156 df-gcd 16398 df-prm 16575 df-odz 16668 df-phi 16669 df-pc 16741 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-pws 17345 df-xrs 17398 df-qtop 17403 df-imas 17404 df-qus 17405 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-nsg 19029 df-eqg 19030 df-ghm 19118 df-gim 19164 df-cntz 19222 df-od 19433 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-srg 20098 df-ring 20146 df-cring 20147 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-dvr 20312 df-rhm 20383 df-rim 20384 df-nzr 20421 df-subrng 20454 df-subrg 20478 df-rlreg 20602 df-domn 20603 df-idom 20604 df-drng 20639 df-field 20640 df-lmod 20788 df-lss 20858 df-lsp 20898 df-sra 21100 df-rgmod 21101 df-lidl 21138 df-rsp 21139 df-2idl 21180 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-zring 21377 df-zrh 21433 df-chr 21435 df-zn 21436 df-assa 21783 df-asp 21784 df-ascl 21785 df-psr 21839 df-mvr 21840 df-mpl 21841 df-opsr 21843 df-evls 22002 df-evl 22003 df-psr1 22085 df-vr1 22086 df-ply1 22087 df-coe1 22088 df-evls1 22223 df-evl1 22224 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-lp 23044 df-perf 23045 df-cn 23135 df-cnp 23136 df-haus 23223 df-tx 23470 df-hmeo 23663 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-xms 24228 df-ms 24229 df-tms 24230 df-cncf 24791 df-limc 25787 df-dv 25788 df-mdeg 25980 df-deg1 25981 df-mon1 26056 df-uc1p 26057 df-q1p 26058 df-r1p 26059 df-log 26485 df-cxp 26486 df-logb 26695 df-primroots 42104 |
| This theorem is referenced by: aks5 42216 |
| Copyright terms: Public domain | W3C validator |