| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for aks5. Clean up the conclusion. (Contributed by metakunt, 9-Aug-2025.) |
| Ref | Expression |
|---|---|
| aks5lem7.1 | ⊢ (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ) |
| aks5lem7.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks5lem7.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks5lem7.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks5lem7.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks5lem7.6 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks5lem7.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks5lem7.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks5lem7.9 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks5lem7.10 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks5lem7.11 | ⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) |
| aks5lem7.12 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| aks5lem7.13 | ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
| aks5lem7.14 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
| aks5lem7.15 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) |
| aks5lem7.16 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
| Ref | Expression |
|---|---|
| aks5lem8 | ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks5lem7.4 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
| 3 | 2 | oveq1d 7402 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (𝑝↑𝑛) = (𝑃↑𝑛)) |
| 4 | 3 | eqeq2d 2740 | . . 3 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (𝑁 = (𝑝↑𝑛) ↔ 𝑁 = (𝑃↑𝑛))) |
| 5 | 4 | rexbidv 3157 | . 2 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛) ↔ ∃𝑛 ∈ ℕ 𝑁 = (𝑃↑𝑛))) |
| 6 | aks5lem7.1 | . . . . 5 ⊢ (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ) | |
| 7 | aks5lem7.2 | . . . . 5 ⊢ 𝑃 = (chr‘𝐾) | |
| 8 | aks5lem7.3 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 9 | aks5lem7.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 10 | aks5lem7.6 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 11 | aks5lem7.7 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 12 | aks5lem7.8 | . . . . 5 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 13 | aks5lem7.9 | . . . . 5 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 14 | aks5lem7.10 | . . . . 5 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 15 | aks5lem7.11 | . . . . 5 ⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) | |
| 16 | aks5lem7.12 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 17 | aks5lem7.13 | . . . . 5 ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | |
| 18 | aks5lem7.14 | . . . . 5 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 19 | aks5lem7.15 | . . . . 5 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) | |
| 20 | aks5lem7.16 | . . . . 5 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
| 21 | 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | aks5lem7 42188 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |
| 22 | eluzelz 12803 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 23 | 10, 22 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | 0red 11177 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 25 | 3re 12266 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 3 ∈ ℝ) |
| 27 | 23 | zred 12638 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 28 | 3pos 12291 | . . . . . . . . 9 ⊢ 0 < 3 | |
| 29 | 28 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 < 3) |
| 30 | eluzle 12806 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ≤ 𝑁) | |
| 31 | 10, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 3 ≤ 𝑁) |
| 32 | 24, 26, 27, 29, 31 | ltletrd 11334 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 33 | 23, 32 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
| 34 | elnnz 12539 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | |
| 35 | 33, 34 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 36 | pcprmpw 16854 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))) | |
| 37 | 1, 35, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))) |
| 38 | 21, 37 | mpbird 257 | . . 3 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛)) |
| 39 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℕ0) | |
| 40 | 39 | nn0zd 12555 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℤ) |
| 41 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 0 < 𝑛) → 0 < 𝑛) | |
| 42 | 39 | nn0red 12504 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℝ) |
| 43 | 0red 11177 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 0 ∈ ℝ) | |
| 44 | 42, 43 | lenltd 11320 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ≤ 0 ↔ ¬ 0 < 𝑛)) |
| 45 | 44 | bicomd 223 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (¬ 0 < 𝑛 ↔ 𝑛 ≤ 0)) |
| 46 | 45 | biimpd 229 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (¬ 0 < 𝑛 → 𝑛 ≤ 0)) |
| 47 | 46 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → 𝑛 ≤ 0) |
| 48 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ≤ 0) | |
| 49 | 39 | adantr 480 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ∈ ℕ0) |
| 50 | nn0le0eq0 12470 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ0 → (𝑛 ≤ 0 ↔ 𝑛 = 0)) | |
| 51 | 50 | bicomd 223 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ0 → (𝑛 = 0 ↔ 𝑛 ≤ 0)) |
| 52 | 49, 51 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 ↔ 𝑛 ≤ 0)) |
| 53 | 48, 52 | mpbird 257 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 = 0) |
| 54 | simplrr 777 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 = (𝑃↑𝑛)) | |
| 55 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑛 = 0) | |
| 56 | 55 | oveq2d 7403 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑𝑛) = (𝑃↑0)) |
| 57 | 1 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℙ) |
| 58 | prmnn 16644 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 59 | 57, 58 | syl 17 | . . . . . . . . . . . . . . . . 17 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℕ) |
| 60 | 59 | nncnd 12202 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℂ) |
| 61 | 60 | exp0d 14105 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑0) = 1) |
| 62 | 56, 61 | eqtrd 2764 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑𝑛) = 1) |
| 63 | 54, 62 | eqtrd 2764 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 = 1) |
| 64 | 1red 11175 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 ∈ ℝ) | |
| 65 | 1red 11175 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 66 | 35 | nnred 12201 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 67 | 1lt3 12354 | . . . . . . . . . . . . . . . . . . . 20 ⊢ 1 < 3 | |
| 68 | 67 | a1i 11 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 1 < 3) |
| 69 | 65, 26, 66, 68, 31 | ltletrd 11334 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝜑 → 1 < 𝑁) |
| 70 | 69 | adantr 480 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 1 < 𝑁) |
| 71 | 70 | adantr 480 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 < 𝑁) |
| 72 | 64, 71 | ltned 11310 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 ≠ 𝑁) |
| 73 | 72 | necomd 2980 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 ≠ 1) |
| 74 | 73 | neneqd 2930 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → ¬ 𝑁 = 1) |
| 75 | 63, 74 | pm2.21dd 195 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 0 < 𝑛) |
| 76 | 75 | ex 412 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 = 0 → 0 < 𝑛)) |
| 77 | 76 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 → 0 < 𝑛)) |
| 78 | 53, 77 | mpd 15 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 0 < 𝑛) |
| 79 | 78 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ≤ 0 → 0 < 𝑛)) |
| 80 | 79 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → (𝑛 ≤ 0 → 0 < 𝑛)) |
| 81 | 47, 80 | mpd 15 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → 0 < 𝑛) |
| 82 | 41, 81 | pm2.61dan 812 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 0 < 𝑛) |
| 83 | 40, 82 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ∈ ℤ ∧ 0 < 𝑛)) |
| 84 | elnnz 12539 | . . . 4 ⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛)) | |
| 85 | 83, 84 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℕ) |
| 86 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑁 = (𝑃↑𝑛)) | |
| 87 | 38, 85, 86 | reximssdv 3151 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝑁 = (𝑃↑𝑛)) |
| 88 | 1, 5, 87 | rspcedvd 3590 | 1 ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 [cec 8669 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 ≤ cle 11209 − cmin 11405 ℕcn 12186 2c2 12241 3c3 12242 ℕ0cn0 12442 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 ⌊cfl 13752 ↑cexp 14026 ♯chash 14295 √csqrt 15199 ∥ cdvds 16222 gcd cgcd 16464 ℙcprime 16641 odℤcodz 16733 ϕcphi 16734 pCnt cpc 16807 Basecbs 17179 +gcplusg 17220 -gcsg 18867 .gcmg 18999 ~QG cqg 19054 mulGrpcmgp 20049 1rcur 20090 Fieldcfield 20639 RSpancrsp 21117 ℤRHomczrh 21409 chrcchr 21411 ℤ/nℤczn 21412 var1cv1 22060 Poly1cpl1 22061 logb clogb 26674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-prod 15870 df-fallfac 15973 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-dvds 16223 df-gcd 16465 df-prm 16642 df-odz 16735 df-phi 16736 df-pc 16808 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-pws 17412 df-xrs 17465 df-qtop 17470 df-imas 17471 df-qus 17472 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-nsg 19056 df-eqg 19057 df-ghm 19145 df-gim 19191 df-cntz 19249 df-od 19458 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-rim 20382 df-nzr 20422 df-subrng 20455 df-subrg 20479 df-rlreg 20603 df-domn 20604 df-idom 20605 df-drng 20640 df-field 20641 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-chr 21415 df-zn 21416 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-evl 21982 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 df-evls1 22202 df-evl1 22203 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 df-mdeg 25960 df-deg1 25961 df-mon1 26036 df-uc1p 26037 df-q1p 26038 df-r1p 26039 df-log 26465 df-cxp 26466 df-logb 26675 df-primroots 42080 |
| This theorem is referenced by: aks5 42192 |
| Copyright terms: Public domain | W3C validator |