| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for aks5. Clean up the conclusion. (Contributed by metakunt, 9-Aug-2025.) |
| Ref | Expression |
|---|---|
| aks5lem7.1 | ⊢ (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ) |
| aks5lem7.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks5lem7.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks5lem7.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks5lem7.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks5lem7.6 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks5lem7.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks5lem7.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks5lem7.9 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks5lem7.10 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks5lem7.11 | ⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) |
| aks5lem7.12 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| aks5lem7.13 | ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
| aks5lem7.14 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
| aks5lem7.15 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) |
| aks5lem7.16 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
| Ref | Expression |
|---|---|
| aks5lem8 | ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks5lem7.4 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
| 3 | 2 | oveq1d 7368 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (𝑝↑𝑛) = (𝑃↑𝑛)) |
| 4 | 3 | eqeq2d 2740 | . . 3 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (𝑁 = (𝑝↑𝑛) ↔ 𝑁 = (𝑃↑𝑛))) |
| 5 | 4 | rexbidv 3153 | . 2 ⊢ ((𝜑 ∧ 𝑝 = 𝑃) → (∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛) ↔ ∃𝑛 ∈ ℕ 𝑁 = (𝑃↑𝑛))) |
| 6 | aks5lem7.1 | . . . . 5 ⊢ (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ) | |
| 7 | aks5lem7.2 | . . . . 5 ⊢ 𝑃 = (chr‘𝐾) | |
| 8 | aks5lem7.3 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 9 | aks5lem7.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 10 | aks5lem7.6 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 11 | aks5lem7.7 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 12 | aks5lem7.8 | . . . . 5 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 13 | aks5lem7.9 | . . . . 5 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 14 | aks5lem7.10 | . . . . 5 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 15 | aks5lem7.11 | . . . . 5 ⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) | |
| 16 | aks5lem7.12 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 17 | aks5lem7.13 | . . . . 5 ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | |
| 18 | aks5lem7.14 | . . . . 5 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 19 | aks5lem7.15 | . . . . 5 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) | |
| 20 | aks5lem7.16 | . . . . 5 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
| 21 | 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | aks5lem7 42173 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |
| 22 | eluzelz 12763 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 23 | 10, 22 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | 0red 11137 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 25 | 3re 12226 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 3 ∈ ℝ) |
| 27 | 23 | zred 12598 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 28 | 3pos 12251 | . . . . . . . . 9 ⊢ 0 < 3 | |
| 29 | 28 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 < 3) |
| 30 | eluzle 12766 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ≤ 𝑁) | |
| 31 | 10, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 3 ≤ 𝑁) |
| 32 | 24, 26, 27, 29, 31 | ltletrd 11294 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 33 | 23, 32 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
| 34 | elnnz 12499 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | |
| 35 | 33, 34 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 36 | pcprmpw 16813 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))) | |
| 37 | 1, 35, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))) |
| 38 | 21, 37 | mpbird 257 | . . 3 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 = (𝑃↑𝑛)) |
| 39 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℕ0) | |
| 40 | 39 | nn0zd 12515 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℤ) |
| 41 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 0 < 𝑛) → 0 < 𝑛) | |
| 42 | 39 | nn0red 12464 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℝ) |
| 43 | 0red 11137 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 0 ∈ ℝ) | |
| 44 | 42, 43 | lenltd 11280 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ≤ 0 ↔ ¬ 0 < 𝑛)) |
| 45 | 44 | bicomd 223 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (¬ 0 < 𝑛 ↔ 𝑛 ≤ 0)) |
| 46 | 45 | biimpd 229 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (¬ 0 < 𝑛 → 𝑛 ≤ 0)) |
| 47 | 46 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → 𝑛 ≤ 0) |
| 48 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ≤ 0) | |
| 49 | 39 | adantr 480 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ∈ ℕ0) |
| 50 | nn0le0eq0 12430 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ0 → (𝑛 ≤ 0 ↔ 𝑛 = 0)) | |
| 51 | 50 | bicomd 223 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ0 → (𝑛 = 0 ↔ 𝑛 ≤ 0)) |
| 52 | 49, 51 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 ↔ 𝑛 ≤ 0)) |
| 53 | 48, 52 | mpbird 257 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 = 0) |
| 54 | simplrr 777 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 = (𝑃↑𝑛)) | |
| 55 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑛 = 0) | |
| 56 | 55 | oveq2d 7369 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑𝑛) = (𝑃↑0)) |
| 57 | 1 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℙ) |
| 58 | prmnn 16603 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 59 | 57, 58 | syl 17 | . . . . . . . . . . . . . . . . 17 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℕ) |
| 60 | 59 | nncnd 12162 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℂ) |
| 61 | 60 | exp0d 14065 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑0) = 1) |
| 62 | 56, 61 | eqtrd 2764 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → (𝑃↑𝑛) = 1) |
| 63 | 54, 62 | eqtrd 2764 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 = 1) |
| 64 | 1red 11135 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 ∈ ℝ) | |
| 65 | 1red 11135 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 66 | 35 | nnred 12161 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 67 | 1lt3 12314 | . . . . . . . . . . . . . . . . . . . 20 ⊢ 1 < 3 | |
| 68 | 67 | a1i 11 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 1 < 3) |
| 69 | 65, 26, 66, 68, 31 | ltletrd 11294 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝜑 → 1 < 𝑁) |
| 70 | 69 | adantr 480 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 1 < 𝑁) |
| 71 | 70 | adantr 480 | . . . . . . . . . . . . . . . 16 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 < 𝑁) |
| 72 | 64, 71 | ltned 11270 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 1 ≠ 𝑁) |
| 73 | 72 | necomd 2980 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 𝑁 ≠ 1) |
| 74 | 73 | neneqd 2930 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → ¬ 𝑁 = 1) |
| 75 | 63, 74 | pm2.21dd 195 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 = 0) → 0 < 𝑛) |
| 76 | 75 | ex 412 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 = 0 → 0 < 𝑛)) |
| 77 | 76 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 → 0 < 𝑛)) |
| 78 | 53, 77 | mpd 15 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ 𝑛 ≤ 0) → 0 < 𝑛) |
| 79 | 78 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ≤ 0 → 0 < 𝑛)) |
| 80 | 79 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → (𝑛 ≤ 0 → 0 < 𝑛)) |
| 81 | 47, 80 | mpd 15 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) ∧ ¬ 0 < 𝑛) → 0 < 𝑛) |
| 82 | 41, 81 | pm2.61dan 812 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 0 < 𝑛) |
| 83 | 40, 82 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → (𝑛 ∈ ℤ ∧ 0 < 𝑛)) |
| 84 | elnnz 12499 | . . . 4 ⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛)) | |
| 85 | 83, 84 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑛 ∈ ℕ) |
| 86 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑁 = (𝑃↑𝑛))) → 𝑁 = (𝑃↑𝑛)) | |
| 87 | 38, 85, 86 | reximssdv 3147 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝑁 = (𝑃↑𝑛)) |
| 88 | 1, 5, 87 | rspcedvd 3581 | 1 ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {csn 4579 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 [cec 8630 ℝcr 11027 0cc0 11028 1c1 11029 · cmul 11033 < clt 11168 ≤ cle 11169 − cmin 11365 ℕcn 12146 2c2 12201 3c3 12202 ℕ0cn0 12402 ℤcz 12489 ℤ≥cuz 12753 ...cfz 13428 ⌊cfl 13712 ↑cexp 13986 ♯chash 14255 √csqrt 15158 ∥ cdvds 16181 gcd cgcd 16423 ℙcprime 16600 odℤcodz 16692 ϕcphi 16693 pCnt cpc 16766 Basecbs 17138 +gcplusg 17179 -gcsg 18832 .gcmg 18964 ~QG cqg 19019 mulGrpcmgp 20043 1rcur 20084 Fieldcfield 20633 RSpancrsp 21132 ℤRHomczrh 21424 chrcchr 21426 ℤ/nℤczn 21427 var1cv1 22076 Poly1cpl1 22077 logb clogb 26690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-ec 8634 df-qs 8638 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-prod 15829 df-fallfac 15932 df-ef 15992 df-sin 15994 df-cos 15995 df-pi 15997 df-dvds 16182 df-gcd 16424 df-prm 16601 df-odz 16694 df-phi 16695 df-pc 16767 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-pws 17371 df-xrs 17424 df-qtop 17429 df-imas 17430 df-qus 17431 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-nsg 19021 df-eqg 19022 df-ghm 19110 df-gim 19156 df-cntz 19214 df-od 19425 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-rim 20376 df-nzr 20416 df-subrng 20449 df-subrg 20473 df-rlreg 20597 df-domn 20598 df-idom 20599 df-drng 20634 df-field 20635 df-lmod 20783 df-lss 20853 df-lsp 20893 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-rsp 21134 df-2idl 21175 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-zring 21372 df-zrh 21428 df-chr 21430 df-zn 21431 df-assa 21778 df-asp 21779 df-ascl 21780 df-psr 21834 df-mvr 21835 df-mpl 21836 df-opsr 21838 df-evls 21997 df-evl 21998 df-psr1 22080 df-vr1 22081 df-ply1 22082 df-coe1 22083 df-evls1 22218 df-evl1 22219 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 df-mdeg 25976 df-deg1 25977 df-mon1 26052 df-uc1p 26053 df-q1p 26054 df-r1p 26055 df-log 26481 df-cxp 26482 df-logb 26691 df-primroots 42065 |
| This theorem is referenced by: aks5 42177 |
| Copyright terms: Public domain | W3C validator |