Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5lem8 Structured version   Visualization version   GIF version

Theorem aks5lem8 42304
Description: Lemma for aks5. Clean up the conclusion. (Contributed by metakunt, 9-Aug-2025.)
Hypotheses
Ref Expression
aks5lem7.1 (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ)
aks5lem7.2 𝑃 = (chr‘𝐾)
aks5lem7.3 (𝜑𝐾 ∈ Field)
aks5lem7.4 (𝜑𝑃 ∈ ℙ)
aks5lem7.5 (𝜑𝑅 ∈ ℕ)
aks5lem7.6 (𝜑𝑁 ∈ (ℤ‘3))
aks5lem7.7 (𝜑𝑃𝑁)
aks5lem7.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks5lem7.9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks5lem7.10 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks5lem7.11 (𝜑𝑅 ∥ ((♯‘(Base‘𝐾)) − 1))
aks5lem7.12 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
aks5lem7.13 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks5lem7.14 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
aks5lem7.15 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})
aks5lem7.16 𝑋 = (var1‘(ℤ/nℤ‘𝑁))
Assertion
Ref Expression
aks5lem8 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
Distinct variable groups:   𝐴,𝑎   𝐴,𝑏   𝐾,𝑎   𝐾,𝑏   𝑁,𝑎   𝑁,𝑏   𝑃,𝑎   𝑃,𝑏   𝑅,𝑎   𝑅,𝑏   𝜑,𝑎   𝜑,𝑏   𝑛,𝑁,𝑝   𝑃,𝑛,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑛,𝑝)   𝑅(𝑛,𝑝)   𝑆(𝑛,𝑝,𝑎,𝑏)   𝐾(𝑛,𝑝)   𝐿(𝑛,𝑝,𝑎,𝑏)   𝑋(𝑛,𝑝,𝑎,𝑏)

Proof of Theorem aks5lem8
StepHypRef Expression
1 aks5lem7.4 . 2 (𝜑𝑃 ∈ ℙ)
2 simpr 484 . . . . 5 ((𝜑𝑝 = 𝑃) → 𝑝 = 𝑃)
32oveq1d 7370 . . . 4 ((𝜑𝑝 = 𝑃) → (𝑝𝑛) = (𝑃𝑛))
43eqeq2d 2744 . . 3 ((𝜑𝑝 = 𝑃) → (𝑁 = (𝑝𝑛) ↔ 𝑁 = (𝑃𝑛)))
54rexbidv 3158 . 2 ((𝜑𝑝 = 𝑃) → (∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛) ↔ ∃𝑛 ∈ ℕ 𝑁 = (𝑃𝑛)))
6 aks5lem7.1 . . . . 5 (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ)
7 aks5lem7.2 . . . . 5 𝑃 = (chr‘𝐾)
8 aks5lem7.3 . . . . 5 (𝜑𝐾 ∈ Field)
9 aks5lem7.5 . . . . 5 (𝜑𝑅 ∈ ℕ)
10 aks5lem7.6 . . . . 5 (𝜑𝑁 ∈ (ℤ‘3))
11 aks5lem7.7 . . . . 5 (𝜑𝑃𝑁)
12 aks5lem7.8 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
13 aks5lem7.9 . . . . 5 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
14 aks5lem7.10 . . . . 5 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
15 aks5lem7.11 . . . . 5 (𝜑𝑅 ∥ ((♯‘(Base‘𝐾)) − 1))
16 aks5lem7.12 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
17 aks5lem7.13 . . . . 5 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
18 aks5lem7.14 . . . . 5 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
19 aks5lem7.15 . . . . 5 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})
20 aks5lem7.16 . . . . 5 𝑋 = (var1‘(ℤ/nℤ‘𝑁))
216, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20aks5lem7 42303 . . . 4 (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
22 eluzelz 12752 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
2310, 22syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
24 0red 11125 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
25 3re 12215 . . . . . . . . 9 3 ∈ ℝ
2625a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
2723zred 12587 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
28 3pos 12240 . . . . . . . . 9 0 < 3
2928a1i 11 . . . . . . . 8 (𝜑 → 0 < 3)
30 eluzle 12755 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
3110, 30syl 17 . . . . . . . 8 (𝜑 → 3 ≤ 𝑁)
3224, 26, 27, 29, 31ltletrd 11283 . . . . . . 7 (𝜑 → 0 < 𝑁)
3323, 32jca 511 . . . . . 6 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
34 elnnz 12488 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
3533, 34sylibr 234 . . . . 5 (𝜑𝑁 ∈ ℕ)
36 pcprmpw 16805 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))))
371, 35, 36syl2anc 584 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ0 𝑁 = (𝑃𝑛) ↔ 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))))
3821, 37mpbird 257 . . 3 (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 = (𝑃𝑛))
39 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 𝑛 ∈ ℕ0)
4039nn0zd 12504 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 𝑛 ∈ ℤ)
41 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 0 < 𝑛) → 0 < 𝑛)
4239nn0red 12453 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 𝑛 ∈ ℝ)
43 0red 11125 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 0 ∈ ℝ)
4442, 43lenltd 11269 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (𝑛 ≤ 0 ↔ ¬ 0 < 𝑛))
4544bicomd 223 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (¬ 0 < 𝑛𝑛 ≤ 0))
4645biimpd 229 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (¬ 0 < 𝑛𝑛 ≤ 0))
4746imp 406 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ ¬ 0 < 𝑛) → 𝑛 ≤ 0)
48 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ≤ 0)
4939adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 ∈ ℕ0)
50 nn0le0eq0 12419 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑛 ≤ 0 ↔ 𝑛 = 0))
5150bicomd 223 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 = 0 ↔ 𝑛 ≤ 0))
5249, 51syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 ↔ 𝑛 ≤ 0))
5348, 52mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → 𝑛 = 0)
54 simplrr 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑁 = (𝑃𝑛))
55 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑛 = 0)
5655oveq2d 7371 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → (𝑃𝑛) = (𝑃↑0))
571ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℙ)
58 prmnn 16595 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5957, 58syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℕ)
6059nncnd 12151 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑃 ∈ ℂ)
6160exp0d 14057 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → (𝑃↑0) = 1)
6256, 61eqtrd 2768 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → (𝑃𝑛) = 1)
6354, 62eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑁 = 1)
64 1red 11123 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 1 ∈ ℝ)
65 1red 11123 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
6635nnred 12150 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
67 1lt3 12303 . . . . . . . . . . . . . . . . . . . 20 1 < 3
6867a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 < 3)
6965, 26, 66, 68, 31ltletrd 11283 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 𝑁)
7069adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 1 < 𝑁)
7170adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 1 < 𝑁)
7264, 71ltned 11259 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 1 ≠ 𝑁)
7372necomd 2985 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 𝑁 ≠ 1)
7473neneqd 2935 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → ¬ 𝑁 = 1)
7563, 74pm2.21dd 195 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 = 0) → 0 < 𝑛)
7675ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (𝑛 = 0 → 0 < 𝑛))
7776adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → (𝑛 = 0 → 0 < 𝑛))
7853, 77mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ 𝑛 ≤ 0) → 0 < 𝑛)
7978ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (𝑛 ≤ 0 → 0 < 𝑛))
8079adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ ¬ 0 < 𝑛) → (𝑛 ≤ 0 → 0 < 𝑛))
8147, 80mpd 15 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) ∧ ¬ 0 < 𝑛) → 0 < 𝑛)
8241, 81pm2.61dan 812 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 0 < 𝑛)
8340, 82jca 511 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → (𝑛 ∈ ℤ ∧ 0 < 𝑛))
84 elnnz 12488 . . . 4 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
8583, 84sylibr 234 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 𝑛 ∈ ℕ)
86 simprr 772 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑁 = (𝑃𝑛))) → 𝑁 = (𝑃𝑛))
8738, 85, 86reximssdv 3152 . 2 (𝜑 → ∃𝑛 ∈ ℕ 𝑁 = (𝑃𝑛))
881, 5, 87rspcedvd 3576 1 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3049  wrex 3058  {csn 4577   class class class wbr 5095  cfv 6489  (class class class)co 7355  [cec 8629  cr 11015  0cc0 11016  1c1 11017   · cmul 11021   < clt 11156  cle 11157  cmin 11354  cn 12135  2c2 12190  3c3 12191  0cn0 12391  cz 12478  cuz 12742  ...cfz 13417  cfl 13704  cexp 13978  chash 14247  csqrt 15150  cdvds 16173   gcd cgcd 16415  cprime 16592  odcodz 16684  ϕcphi 16685   pCnt cpc 16758  Basecbs 17130  +gcplusg 17171  -gcsg 18858  .gcmg 18990   ~QG cqg 19045  mulGrpcmgp 20068  1rcur 20109  Fieldcfield 20655  RSpancrsp 21154  ℤRHomczrh 21446  chrcchr 21448  ℤ/nczn 21449  var1cv1 22098  Poly1cpl1 22099   logb clogb 26711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-dju 9804  df-card 9842  df-acn 9845  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-xnn0 12465  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-prod 15821  df-fallfac 15924  df-ef 15984  df-sin 15986  df-cos 15987  df-pi 15989  df-dvds 16174  df-gcd 16416  df-prm 16593  df-odz 16686  df-phi 16687  df-pc 16759  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-pws 17363  df-xrs 17416  df-qtop 17421  df-imas 17422  df-qus 17423  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-nsg 19047  df-eqg 19048  df-ghm 19135  df-gim 19181  df-cntz 19239  df-od 19450  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-srg 20115  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-rhm 20400  df-rim 20401  df-nzr 20438  df-subrng 20471  df-subrg 20495  df-rlreg 20619  df-domn 20620  df-idom 20621  df-drng 20656  df-field 20657  df-lmod 20805  df-lss 20875  df-lsp 20915  df-sra 21117  df-rgmod 21118  df-lidl 21155  df-rsp 21156  df-2idl 21197  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-zring 21394  df-zrh 21450  df-chr 21452  df-zn 21453  df-assa 21800  df-asp 21801  df-ascl 21802  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-evls 22019  df-evl 22020  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-evls1 22240  df-evl1 22241  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-limc 25804  df-dv 25805  df-mdeg 25997  df-deg1 25998  df-mon1 26073  df-uc1p 26074  df-q1p 26075  df-r1p 26076  df-log 26502  df-cxp 26503  df-logb 26712  df-primroots 42195
This theorem is referenced by:  aks5  42307
  Copyright terms: Public domain W3C validator