MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12wlem Structured version   Visualization version   GIF version

Theorem ax12wlem 2128
Description: Lemma for weak version of ax-12 2171. Uses only Tarski's FOL axiom schemes. In some cases, this lemma may lead to shorter proofs than ax12w 2129. (Contributed by NM, 10-Apr-2017.)
Hypothesis
Ref Expression
ax12wlemw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
ax12wlem (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem ax12wlem
StepHypRef Expression
1 ax12wlemw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
2 ax-5 1913 . 2 (𝜓 → ∀𝑥𝜓)
31, 2ax12i 1970 1 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  ax12w  2129
  Copyright terms: Public domain W3C validator