MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12w Structured version   Visualization version   GIF version

Theorem ax12w 2127
Description: Weak version of ax-12 2163 from which we can prove any ax-12 2163 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. An instance of the first hypothesis will normally require that 𝑥 and 𝑦 be distinct (unless 𝑥 does not occur in 𝜑). For an example of how the hypotheses can be eliminated when we substitute an expression without wff variables for 𝜑, see ax12wdemo 2129. (Contributed by NM, 10-Apr-2017.)
Hypotheses
Ref Expression
ax12w.1 (𝑥 = 𝑦 → (𝜑𝜓))
ax12w.2 (𝑦 = 𝑧 → (𝜑𝜒))
Assertion
Ref Expression
ax12w (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝑦,𝑧   𝜓,𝑥   𝜑,𝑧   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧)

Proof of Theorem ax12w
StepHypRef Expression
1 ax12w.2 . . 3 (𝑦 = 𝑧 → (𝜑𝜒))
21spw 2084 . 2 (∀𝑦𝜑𝜑)
3 ax12w.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
43ax12wlem 2126 . 2 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
52, 4syl5 34 1 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1824
This theorem is referenced by:  ax12wdemo  2129
  Copyright terms: Public domain W3C validator