![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax12w | Structured version Visualization version GIF version |
Description: Weak version of ax-12 2203 from which we can prove any ax-12 2203 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. An instance of the first hypothesis will normally require that 𝑥 and 𝑦 be distinct (unless 𝑥 does not occur in 𝜑). For an example of how the hypotheses can be eliminated when we substitute an expression without wff variables for 𝜑, see ax12wdemo 2167. (Contributed by NM, 10-Apr-2017.) |
Ref | Expression |
---|---|
ax12w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
ax12w.2 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
ax12w | ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12w.2 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) | |
2 | 1 | spw 2123 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) |
3 | ax12w.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | ax12wlem 2164 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
5 | 2, 4 | syl5 34 | 1 ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ex 1853 |
This theorem is referenced by: ax12wdemo 2167 |
Copyright terms: Public domain | W3C validator |