Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c7toc7 Structured version   Visualization version   GIF version

Theorem axc5c7toc7 36927
Description: Rederivation of ax-c7 36899 from axc5c7 36925. Only propositional calculus is used for the rederivation. (Contributed by Scott Fenton, 12-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c7toc7 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)

Proof of Theorem axc5c7toc7
StepHypRef Expression
1 pm2.21 123 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝜑 → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑))
2 axc5c7 36925 . 2 ((∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) → 𝜑)
31, 2syl 17 1 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-c5 36897  ax-c7 36899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator