Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c7 Structured version   Visualization version   GIF version

Theorem axc5c7 36852
Description: Proof of a single axiom that can replace ax-c5 36824 and ax-c7 36826. See axc5c7toc5 36853 and axc5c7toc7 36854 for the rederivation of those axioms. (Contributed by Scott Fenton, 12-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c7 ((∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem axc5c7
StepHypRef Expression
1 ax-c7 36826 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
2 ax-c5 36824 . 2 (∀𝑥𝜑𝜑)
31, 2ja 186 1 ((∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-c5 36824  ax-c7 36826
This theorem is referenced by:  axc5c7toc5  36853  axc5c7toc7  36854
  Copyright terms: Public domain W3C validator