![]() |
Metamath
Proof Explorer Theorem List (p. 378 of 485) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30800) |
![]() (30801-32323) |
![]() (32324-48424) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | contrd 37701 | A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (¬ 𝜓 → 𝜒)) & ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | an12i 37702 | An inference from commuting operands in a chain of conjunctions. (Contributed by Giovanni Mascellani, 22-May-2019.) |
⊢ (𝜑 ∧ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 ∧ (𝜑 ∧ 𝜒)) | ||
Theorem | exmid2 37703 | An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ ((𝜓 ∧ 𝜑) → 𝜒) & ⊢ ((¬ 𝜓 ∧ 𝜂) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜂) → 𝜒) | ||
Theorem | selconj 37704 | An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ ((𝜂 ∧ 𝜑) ↔ (𝜓 ∧ (𝜂 ∧ 𝜒))) | ||
Theorem | truconj 37705 | Add true as a conjunct. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) | ||
Theorem | orel 37706 | An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ ((𝜓 ∧ 𝜂) → 𝜃) & ⊢ ((𝜒 ∧ 𝜌) → 𝜃) & ⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜃) | ||
Theorem | negel 37707 | An inference for negation elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜓 → 𝜒) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ⊥) | ||
Theorem | botel 37708 | An inference for bottom elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜑 → ⊥) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | tradd 37709 | Add top ad a conjunct. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ (⊤ ∧ 𝜓)) | ||
Theorem | gm-sbtru 37710 | Substitution does not change truth. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]⊤ ↔ ⊤) | ||
Theorem | sbfal 37711 | Substitution does not change falsity. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]⊥ ↔ ⊥) | ||
Theorem | sbcani 37712 | Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜂)) | ||
Theorem | sbcori 37713 | Distribution of class substitution over disjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ (𝜒 ∨ 𝜂)) | ||
Theorem | sbcimi 37714 | Distribution of class substitution over implication, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜒 → 𝜂)) | ||
Theorem | sbcni 37715 | Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜓) | ||
Theorem | sbali 37716 | Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | sbexi 37717 | Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) | ||
Theorem | sbcalf 37718* | Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) | ||
Theorem | sbcexf 37719* | Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑) | ||
Theorem | sbcalfi 37720* | Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝐴 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | sbcexfi 37721* | Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝐴 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | spsbcdi 37722 | A lemma for eliminating a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ (𝜑 → ∀𝑥𝜒) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | alrimii 37723* | A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) & ⊢ Ⅎ𝑦𝜒 ⇒ ⊢ (𝜑 → ∀𝑥𝜒) | ||
Theorem | spesbcdi 37724 | A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜒) | ||
Theorem | exlimddvf 37725 | A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ (𝜑 → ∃𝑥𝜃) & ⊢ Ⅎ𝑥𝜓 & ⊢ ((𝜃 ∧ 𝜓) → 𝜒) & ⊢ Ⅎ𝑥𝜒 ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | exlimddvfi 37726 | A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ (𝜑 → ∃𝑥𝜃) & ⊢ Ⅎ𝑦𝜃 & ⊢ Ⅎ𝑦𝜓 & ⊢ ([𝑦 / 𝑥]𝜃 ↔ 𝜂) & ⊢ ((𝜂 ∧ 𝜓) → 𝜒) & ⊢ Ⅎ𝑦𝜒 ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | sbceq1ddi 37727 | A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝜃) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜃) & ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜂) | ||
Theorem | sbccom2lem 37728* | Lemma for sbccom2 37729. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2 37729* | Commutative law for double class substitution. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2f 37730* | Commutative law for double class substitution, with nonfree variable condition. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2fi 37731* | Commutative law for double class substitution, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 & ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜓) | ||
Theorem | csbcom2fi 37732* | Commutative law for double class substitution in a class, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 & ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 & ⊢ ⦋𝐴 / 𝑥⦌𝐷 = 𝐸 ⇒ ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐸 | ||
A collection of Tseitin axioms used to convert a wff to Conjunctive Normal Form. | ||
Theorem | fald 37733 | Refutation of falsity, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ¬ ⊥) | ||
Theorem | tsim1 37734 | A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓))) | ||
Theorem | tsim2 37735 | A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜑 ∨ (𝜑 → 𝜓))) | ||
Theorem | tsim3 37736 | A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜓 ∨ (𝜑 → 𝜓))) | ||
Theorem | tsbi1 37737 | A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) | ||
Theorem | tsbi2 37738 | A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ (𝜑 ↔ 𝜓))) | ||
Theorem | tsbi3 37739 | A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) | ||
Theorem | tsbi4 37740 | A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) | ||
Theorem | tsxo1 37741 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsxo2 37742 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsxo3 37743 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsxo4 37744 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsan1 37745 | A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓))) | ||
Theorem | tsan2 37746 | A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜑 ∨ ¬ (𝜑 ∧ 𝜓))) | ||
Theorem | tsan3 37747 | A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜓 ∨ ¬ (𝜑 ∧ 𝜓))) | ||
Theorem | tsna1 37748 | A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊼ 𝜓))) | ||
Theorem | tsna2 37749 | A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜑 ∨ (𝜑 ⊼ 𝜓))) | ||
Theorem | tsna3 37750 | A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜓 ∨ (𝜑 ⊼ 𝜓))) | ||
Theorem | tsor1 37751 | A Tseitin axiom for logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | ||
Theorem | tsor2 37752 | A Tseitin axiom for logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜑 ∨ (𝜑 ∨ 𝜓))) | ||
Theorem | tsor3 37753 | A Tseitin axiom for logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜓 ∨ (𝜑 ∨ 𝜓))) | ||
Theorem | ts3an1 37754 | A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → ((¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒) ∨ (𝜑 ∧ 𝜓 ∧ 𝜒))) | ||
Theorem | ts3an2 37755 | A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒))) | ||
Theorem | ts3an3 37756 | A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (𝜒 ∨ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒))) | ||
Theorem | ts3or1 37757 | A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (((𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ 𝜓 ∨ 𝜒))) | ||
Theorem | ts3or2 37758 | A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜓 ∨ 𝜒))) | ||
Theorem | ts3or3 37759 | A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜒 ∨ (𝜑 ∨ 𝜓 ∨ 𝜒))) | ||
A collection of theorems for commuting equalities (or biconditionals) with other constructs. | ||
Theorem | iuneq2f 37760 | Equality deduction for indexed union. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | rabeq12f 37761 | Equality deduction for restricted class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓)) → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
Theorem | csbeq12 37762 | Equality deduction for substitution in class. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐷) | ||
Theorem | sbeqi 37763 | Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑 ↔ 𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓)) | ||
Theorem | ralbi12f 37764 | Equality deduction for restricted universal quantification. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓)) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | oprabbi 37765 | Equality deduction for class abstraction of nested ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) | ||
Theorem | mpobi123f 37766* | Equality deduction for maps-to notations with two arguments. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑦𝐷 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑥𝐷 ⇒ ⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹)) | ||
Theorem | iuneq12f 37767 | Equality deduction for indexed unions. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) | ||
Theorem | iineq12f 37768 | Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) | ||
Theorem | opabbi 37769 | Equality deduction for class abstraction of ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) | ||
Theorem | mptbi12f 37770 | Equality deduction for maps-to notations. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐷 = 𝐸) → (𝑥 ∈ 𝐴 ↦ 𝐷) = (𝑥 ∈ 𝐵 ↦ 𝐸)) | ||
Work in progress or things that do not belong anywhere else. | ||
Theorem | orcomdd 37771 | Commutativity of logic disjunction, in double deduction form. Should not be moved to main, see PR #3034 in Github. Use orcomd 869 instead. (Contributed by Giovanni Mascellani, 19-Mar-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 ∨ 𝜒))) | ||
Theorem | scottexf 37772* | A version of scottex 9910 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V | ||
Theorem | scott0f 37773* | A version of scott0 9911 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) | ||
Theorem | scottn0f 37774* | A version of scott0f 37773 with inequalities instead of equalities. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅) | ||
Theorem | ac6s3f 37775* | Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
⊢ Ⅎ𝑦𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ac6s6 37776* | Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
⊢ Ⅎ𝑦𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) | ||
Theorem | ac6s6f 37777* | Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) | ||
Syntax | cxrn 37778 | Extend the definition of a class to include the range Cartesian product class. |
class (𝐴 ⋉ 𝐵) | ||
Syntax | ccoss 37779 | Extend the definition of a class to include the class of cosets by a class. (Read: the class of cosets by 𝑅.) |
class ≀ 𝑅 | ||
Syntax | ccoels 37780 | Extend the definition of a class to include the class of coelements on a class. (Read: the class of coelements on 𝐴.) |
class ∼ 𝐴 | ||
Syntax | crels 37781 | Extend the definition of a class to include the relation class. |
class Rels | ||
Syntax | cssr 37782 | Extend the definition of a class to include the subset class. |
class S | ||
Syntax | crefs 37783 | Extend the definition of a class to include the reflexivity class. |
class Refs | ||
Syntax | crefrels 37784 | Extend the definition of a class to include the reflexive relations class. |
class RefRels | ||
Syntax | wrefrel 37785 | Extend the definition of a wff to include the reflexive relation predicate. (Read: 𝑅 is a reflexive relation.) |
wff RefRel 𝑅 | ||
Syntax | ccnvrefs 37786 | Extend the definition of a class to include the converse reflexivity class. |
class CnvRefs | ||
Syntax | ccnvrefrels 37787 | Extend the definition of a class to include the converse reflexive relations class. |
class CnvRefRels | ||
Syntax | wcnvrefrel 37788 | Extend the definition of a wff to include the converse reflexive relation predicate. (Read: 𝑅 is a converse reflexive relation.) |
wff CnvRefRel 𝑅 | ||
Syntax | csyms 37789 | Extend the definition of a class to include the symmetry class. |
class Syms | ||
Syntax | csymrels 37790 | Extend the definition of a class to include the symmetry relations class. |
class SymRels | ||
Syntax | wsymrel 37791 | Extend the definition of a wff to include the symmetry relation predicate. (Read: 𝑅 is a symmetric relation.) |
wff SymRel 𝑅 | ||
Syntax | ctrs 37792 | Extend the definition of a class to include the transitivity class (but cf. the transitive class defined in df-tr 5267). |
class Trs | ||
Syntax | ctrrels 37793 | Extend the definition of a class to include the transitive relations class. |
class TrRels | ||
Syntax | wtrrel 37794 | Extend the definition of a wff to include the transitive relation predicate. (Read: 𝑅 is a transitive relation.) |
wff TrRel 𝑅 | ||
Syntax | ceqvrels 37795 | Extend the definition of a class to include the equivalence relations class. |
class EqvRels | ||
Syntax | weqvrel 37796 | Extend the definition of a wff to include the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) |
wff EqvRel 𝑅 | ||
Syntax | ccoeleqvrels 37797 | Extend the definition of a class to include the coelement equivalence relations class. |
class CoElEqvRels | ||
Syntax | wcoeleqvrel 37798 | Extend the definition of a wff to include the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) |
wff CoElEqvRel 𝐴 | ||
Syntax | credunds 37799 | Extend the definition of a class to include the redundancy class. |
class Redunds | ||
Syntax | wredund 37800 | Extend the definition of a wff to include the redundancy predicate. (Read: 𝐴 is redundant with respect to 𝐵 in 𝐶.) |
wff 𝐴 Redund 〈𝐵, 𝐶〉 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |