| Metamath
Proof Explorer Theorem List (p. 378 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ftc1anclem2 37701* | Lemma for ftc1anc 37708- restriction of an integrable function to the absolute value of its real or imaginary part. (Contributed by Brendan Leahy, 19-Jun-2018.) (Revised by Brendan Leahy, 8-Aug-2018.) |
| ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ 𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) ∈ ℝ) | ||
| Theorem | ftc1anclem3 37702 | Lemma for ftc1anc 37708- the absolute value of the sum of a simple function and i times another simple function is itself a simple function. (Contributed by Brendan Leahy, 27-May-2018.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (abs ∘ (𝐹 ∘f + ((ℝ × {i}) ∘f · 𝐺))) ∈ dom ∫1) | ||
| Theorem | ftc1anclem4 37703* | Lemma for ftc1anc 37708. (Contributed by Brendan Leahy, 17-Jun-2018.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ∈ ℝ) | ||
| Theorem | ftc1anclem5 37704* | Lemma for ftc1anc 37708, the existence of a simple function the integral of whose pointwise difference from the function is less than a given positive real. (Contributed by Brendan Leahy, 17-Jun-2018.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) ⇒ ⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < 𝑌) | ||
| Theorem | ftc1anclem6 37705* | Lemma for ftc1anc 37708- construction of simple functions within an arbitrary absolute distance of the given function. Similar to Lemma 565Ib of [Fremlin5] p. 218, but without Fremlin's additional step of converting the simple function into a continuous one, which is unnecessary to this lemma's use; also, two simple functions are used to allow for complex-valued 𝐹. (Contributed by Brendan Leahy, 31-May-2018.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) ⇒ ⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌) | ||
| Theorem | ftc1anclem7 37706* | Lemma for ftc1anc 37708. (Contributed by Brendan Leahy, 13-May-2018.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) ⇒ ⊢ (((((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2))) | ||
| Theorem | ftc1anclem8 37707* | Lemma for ftc1anc 37708. (Contributed by Brendan Leahy, 29-May-2018.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) ⇒ ⊢ (((((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < 𝑦) | ||
| Theorem | ftc1anc 37708* | ftc1a 26078 holds for functions that obey the triangle inequality in the absence of ax-cc 10475. Theorem 565Ma of [Fremlin5] p. 220. (Contributed by Brendan Leahy, 11-May-2018.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) & ⊢ (𝜑 → ∀𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))(abs‘∫𝑠(𝐹‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝑠, (abs‘(𝐹‘𝑡)), 0)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | ||
| Theorem | ftc2nc 37709* | Choice-free proof of ftc2 26085. (Contributed by Brendan Leahy, 19-Jun-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
| Theorem | asindmre 37710 | Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018.) |
| ⊢ 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⇒ ⊢ (𝐷 ∩ ℝ) = (-1(,)1) | ||
| Theorem | dvasin 37711* | Derivative of arcsine. (Contributed by Brendan Leahy, 18-Dec-2018.) |
| ⊢ 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⇒ ⊢ (ℂ D (arcsin ↾ 𝐷)) = (𝑥 ∈ 𝐷 ↦ (1 / (√‘(1 − (𝑥↑2))))) | ||
| Theorem | dvacos 37712* | Derivative of arccosine. (Contributed by Brendan Leahy, 18-Dec-2018.) |
| ⊢ 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⇒ ⊢ (ℂ D (arccos ↾ 𝐷)) = (𝑥 ∈ 𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2))))) | ||
| Theorem | dvreasin 37713 | Real derivative of arcsine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.) |
| ⊢ (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2))))) | ||
| Theorem | dvreacos 37714 | Real derivative of arccosine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.) |
| ⊢ (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))) | ||
| Theorem | areacirclem1 37715* | Antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 28-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ (𝑅 ∈ ℝ+ → (ℝ D (𝑡 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))))) = (𝑡 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2)))))) | ||
| Theorem | areacirclem2 37716* | Endpoint-inclusive continuity of Cartesian ordinate of circle. (Contributed by Brendan Leahy, 29-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) | ||
| Theorem | areacirclem3 37717* | Integrability of cross-section of circle. (Contributed by Brendan Leahy, 26-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ 𝐿1) | ||
| Theorem | areacirclem4 37718* | Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) | ||
| Theorem | areacirclem5 37719* | Finding the cross-section of a circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⇒ ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) | ||
| Theorem | areacirc 37720* | The area of a circle of radius 𝑅 is π · 𝑅↑2. This is Metamath 100 proof #9. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⇒ ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2))) | ||
| Theorem | unirep 37721* | Define a quantity whose definition involves a choice of representative, but which is uniquely determined regardless of the choice. (Contributed by Jeff Madsen, 1-Jun-2011.) |
| ⊢ (𝑦 = 𝐷 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐷 → 𝐵 = 𝐶) & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑧 → 𝐵 = 𝐹) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝜓)) → (℩𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) = 𝐶) | ||
| Theorem | cover2 37722* | Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 20-Jun-2010.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐴 = ∪ 𝐵 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵(∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑)) | ||
| Theorem | cover2g 37723* | Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 21-Jun-2010.) |
| ⊢ 𝐴 = ∪ 𝐵 ⇒ ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵(∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑))) | ||
| Theorem | brabg2 37724* | Relation by a binary relation abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} & ⊢ (𝜒 → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 ↔ 𝜒)) | ||
| Theorem | opelopab3 37725* | Ordered pair membership in an ordered pair class abstraction, with a reduced hypothesis. (Contributed by Jeff Madsen, 29-May-2011.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝜒 → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝐵 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) | ||
| Theorem | cocanfo 37726 | Cancellation of a surjective function from the right side of a composition. (Contributed by Jeff Madsen, 1-Jun-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
| ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) → 𝐺 = 𝐻) | ||
| Theorem | brresi2 37727 | Restriction of a binary relation. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝑅 ↾ 𝐶)𝐵 → 𝐴𝑅𝐵) | ||
| Theorem | fnopabeqd 37728* | Equality deduction for function abstractions. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)}) | ||
| Theorem | fvopabf4g 37729* | Function value of an operator abstraction whose domain is a set of functions with given domain and range. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) & ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) ⇒ ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → (𝐹‘𝐴) = 𝐶) | ||
| Theorem | fnopabco 37730* | Composition of a function with a function abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) & ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} & ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} ⇒ ⊢ (𝐻 Fn 𝐶 → 𝐺 = (𝐻 ∘ 𝐹)) | ||
| Theorem | opropabco 37731* | Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) & ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} & ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} ⇒ ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) | ||
| Theorem | cocnv 37732 | Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) | ||
| Theorem | f1ocan1fv 37733 | Cancel a composition by a bijection by preapplying the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐹 ∘ 𝐺)‘(◡𝐺‘𝑋)) = (𝐹‘𝑋)) | ||
| Theorem | f1ocan2fv 37734 | Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) | ||
| Theorem | inixp 37735* | Intersection of Cartesian products over the same base set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (X𝑥 ∈ 𝐴 𝐵 ∩ X𝑥 ∈ 𝐴 𝐶) = X𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) | ||
| Theorem | upixp 37736* | Universal property of the indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝑋 = X𝑏 ∈ 𝐴 (𝐶‘𝑏) & ⊢ 𝑃 = (𝑤 ∈ 𝐴 ↦ (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑤))) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → ∃!ℎ(ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) | ||
| Theorem | abrexdom 37737* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) | ||
| Theorem | abrexdom2 37738* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = 𝐵} ≼ 𝐴) | ||
| Theorem | ac6gf 37739* | Axiom of Choice. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | indexa 37740* | If for every element of an indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐵 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑐(𝑐 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑐 𝜑 ∧ ∀𝑦 ∈ 𝑐 ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | indexdom 37741* | If for every element of an indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a subset of 𝐵 consisting only of those elements which are indexed by 𝐴, and which is dominated by the set 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑐((𝑐 ≼ 𝐴 ∧ 𝑐 ⊆ 𝐵) ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑐 𝜑 ∧ ∀𝑦 ∈ 𝑐 ∃𝑥 ∈ 𝐴 𝜑))) | ||
| Theorem | frinfm 37742* | A subset of a well-founded set has an infimum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) | ||
| Theorem | welb 37743* | A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (◡𝑅 Or 𝐵 ∧ ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) | ||
| Theorem | supex2g 37744 | Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V) | ||
| Theorem | supclt 37745* | Closure of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Or 𝐴 ∧ ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | supubt 37746* | Upper bound property of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Or 𝐴 ∧ ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) | ||
| Theorem | filbcmb 37747* | Combine a finite set of lower bounds. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 ≤ 𝑧 → 𝜑) → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 ≤ 𝑧 → ∀𝑥 ∈ 𝐴 𝜑))) | ||
| Theorem | fzmul 37748 | Membership of a product in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)))) | ||
| Theorem | sdclem2 37749* | Lemma for sdc 37751. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) & ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) & ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) & ⊢ 𝐽 = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} & ⊢ 𝐹 = (𝑤 ∈ 𝑍, 𝑥 ∈ 𝐽 ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) & ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐺:𝑍⟶𝐽) & ⊢ (𝜑 → (𝐺‘𝑀):(𝑀...𝑀)⟶𝐴) & ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘(𝑤 + 1)) ∈ (𝑤𝐹(𝐺‘𝑤))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) | ||
| Theorem | sdclem1 37750* | Lemma for sdc 37751. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) & ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) & ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) & ⊢ 𝐽 = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} & ⊢ 𝐹 = (𝑤 ∈ 𝑍, 𝑥 ∈ 𝐽 ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) | ||
| Theorem | sdc 37751* | Strong dependent choice. Suppose we may choose an element of 𝐴 such that property 𝜓 holds, and suppose that if we have already chosen the first 𝑘 elements (represented here by a function from 1...𝑘 to 𝐴), we may choose another element so that all 𝑘 + 1 elements taken together have property 𝜓. Then there exists an infinite sequence of elements of 𝐴 such that the first 𝑛 terms of this sequence satisfy 𝜓 for all 𝑛. This theorem allows to construct infinite sequences where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 3-Jun-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) & ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) & ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) | ||
| Theorem | fdc 37752* | Finite version of dependent choice. Construct a function whose value depends on the previous function value, except at a final point at which no new value can be chosen. The final hypothesis ensures that the process will terminate. The proof does not use the Axiom of Choice. (Contributed by Jeff Madsen, 18-Jun-2010.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = (𝑓‘𝑘) → (𝜓 ↔ 𝜒)) & ⊢ (𝑎 = (𝑓‘𝑛) → (𝜃 ↔ 𝜏)) & ⊢ (𝜂 → 𝐶 ∈ 𝐴) & ⊢ (𝜂 → 𝑅 Fr 𝐴) & ⊢ ((𝜂 ∧ 𝑎 ∈ 𝐴) → (𝜃 ∨ ∃𝑏 ∈ 𝐴 𝜑)) & ⊢ (((𝜂 ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑏𝑅𝑎) ⇒ ⊢ (𝜂 → ∃𝑛 ∈ 𝑍 ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓‘𝑀) = 𝐶 ∧ 𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) | ||
| Theorem | fdc1 37753* | Variant of fdc 37752 with no specified base value. (Contributed by Jeff Madsen, 18-Jun-2010.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ (𝑎 = (𝑓‘𝑀) → (𝜁 ↔ 𝜎)) & ⊢ (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = (𝑓‘𝑘) → (𝜓 ↔ 𝜒)) & ⊢ (𝑎 = (𝑓‘𝑛) → (𝜃 ↔ 𝜏)) & ⊢ (𝜂 → ∃𝑎 ∈ 𝐴 𝜁) & ⊢ (𝜂 → 𝑅 Fr 𝐴) & ⊢ ((𝜂 ∧ 𝑎 ∈ 𝐴) → (𝜃 ∨ ∃𝑏 ∈ 𝐴 𝜑)) & ⊢ (((𝜂 ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑏𝑅𝑎) ⇒ ⊢ (𝜂 → ∃𝑛 ∈ 𝑍 ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎 ∧ 𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) | ||
| Theorem | seqpo 37754* | Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Po 𝐴 ∧ 𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹‘𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘(𝑚 + 1))(𝐹‘𝑚)𝑅(𝐹‘𝑛))) | ||
| Theorem | incsequz 37755* | An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴)) | ||
| Theorem | incsequz2 37756* | An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ (ℤ≥‘𝐴)) | ||
| Theorem | nnubfi 37757* | A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.) |
| ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) | ||
| Theorem | nninfnub 37758* | An infinite set of positive integers is unbounded above. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.) |
| ⊢ ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑥} ≠ ∅) | ||
| Theorem | subspopn 37759 | An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (𝐽 ↾t 𝐴)) | ||
| Theorem | neificl 37760 | Neighborhoods are closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Nov-2013.) |
| ⊢ (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → ∩ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | lpss2 37761 | Limit points of a subset are limit points of the larger set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((limPt‘𝐽)‘𝐵) ⊆ ((limPt‘𝐽)‘𝐴)) | ||
| Theorem | metf1o 37762* | Use a bijection with a metric space to construct a metric on a set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑁 = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑌 ↦ ((𝐹‘𝑥)𝑀(𝐹‘𝑦))) ⇒ ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) → 𝑁 ∈ (Met‘𝑌)) | ||
| Theorem | blssp 37763 | A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑆 × 𝑆)) ⇒ ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) | ||
| Theorem | mettrifi 37764* | Generalized triangle inequality for arbitrary finite sums. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝐹‘𝑀)𝐷(𝐹‘𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) | ||
| Theorem | lmclim2 37765* | A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) | ||
| Theorem | geomcau 37766* | If the distance between consecutive points in a sequence is bounded by a geometric sequence, then the sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) | ||
| Theorem | caures 37767 | The restriction of a Cauchy sequence to an upper set of integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝑋 ↑pm ℂ)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ↾ 𝑍) ∈ (Cau‘𝐷))) | ||
| Theorem | caushft 37768* | A shifted Cauchy sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝑁))) & ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) & ⊢ (𝜑 → 𝐺:𝑊⟶𝑋) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Cau‘𝐷)) | ||
| Theorem | constcncf 37769* | A constant function is a continuous function on ℂ. (Contributed by Jeff Madsen, 2-Sep-2009.) (Moved into main set.mm as cncfmptc 24938 and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | cnres2 37770* | The restriction of a continuous function to a subset is continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t 𝐵))) | ||
| Theorem | cnresima 37771 | A continuous function is continuous onto its image. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) | ||
| Theorem | cncfres 37772* | A continuous function on complex numbers restricted to a subset. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐴 ⊆ ℂ & ⊢ 𝐵 ⊆ ℂ & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ 𝐹 ∈ (ℂ–cn→ℂ) & ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) & ⊢ 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) ⇒ ⊢ 𝐺 ∈ (𝐽 Cn 𝐾) | ||
| Syntax | ctotbnd 37773 | Extend class notation with the class of totally bounded metric spaces. |
| class TotBnd | ||
| Syntax | cbnd 37774 | Extend class notation with the class of bounded metric spaces. |
| class Bnd | ||
| Definition | df-totbnd 37775* | Define the class of totally bounded metrics. A metric space is totally bounded iff it can be covered by a finite number of balls of any given radius. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ TotBnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑))}) | ||
| Theorem | istotbnd 37776* | The predicate "is a totally bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | ||
| Theorem | istotbnd2 37777* | The predicate "is a totally bounded metric space." (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ (Met‘𝑋) → (𝑀 ∈ (TotBnd‘𝑋) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | ||
| Theorem | istotbnd3 37778* | A metric space is totally bounded iff there is a finite ε-net for every positive ε. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) | ||
| Theorem | totbndmet 37779 | The predicate "totally bounded" implies 𝑀 is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) | ||
| Theorem | 0totbnd 37780 | The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) | ||
| Theorem | sstotbnd2 37781* | Condition for a subset of a metric space to be totally bounded. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) | ||
| Theorem | sstotbnd 37782* | Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | ||
| Theorem | sstotbnd3 37783* | Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ 𝒫 𝑋(𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))) | ||
| Theorem | totbndss 37784 | A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆)) | ||
| Theorem | equivtotbnd 37785* | If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then total boundedness of 𝑀 implies total boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ (TotBnd‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) ⇒ ⊢ (𝜑 → 𝑁 ∈ (TotBnd‘𝑋)) | ||
| Definition | df-bnd 37786* | Define the class of bounded metrics. A metric space is bounded iff it can be covered by a single ball. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ Bnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)}) | ||
| Theorem | isbnd 37787* | The predicate "is a bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) | ||
| Theorem | bndmet 37788 | A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) | ||
| Theorem | isbndx 37789* | A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) | ||
| Theorem | isbnd2 37790* | The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) | ||
| Theorem | isbnd3 37791* | A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) | ||
| Theorem | isbnd3b 37792* | A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) | ||
| Theorem | bndss 37793 | A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆)) | ||
| Theorem | blbnd 37794 | A ball is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 15-Jan-2014.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅))) | ||
| Theorem | ssbnd 37795* | A subset of a metric space is bounded iff it is contained in a ball around 𝑃, for any 𝑃 in the larger space. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ (Bnd‘𝑌) ↔ ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) | ||
| Theorem | totbndbnd 37796 | A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd 37776 to only require that 𝑀 be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +∞) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Bnd‘𝑋)) | ||
| Theorem | equivbnd 37797* | If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then boundedness of 𝑀 implies boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ (Bnd‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) ⇒ ⊢ (𝜑 → 𝑁 ∈ (Bnd‘𝑋)) | ||
| Theorem | bnd2lem 37798 | Lemma for equivbnd2 37799 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.) |
| ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) | ||
| Theorem | equivbnd2 37799* | If balls are totally bounded in the metric 𝑀, then balls are totally bounded in the equivalent metric 𝑁. (Contributed by Mario Carneiro, 15-Sep-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦))) & ⊢ 𝐶 = (𝑀 ↾ (𝑌 × 𝑌)) & ⊢ 𝐷 = (𝑁 ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌))) ⇒ ⊢ (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌))) | ||
| Theorem | prdsbnd 37800* | The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘(𝑅‘𝑥)) & ⊢ 𝐸 = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Bnd‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Bnd‘𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |