| Metamath
Proof Explorer Theorem List (p. 378 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fvopabf4g 37701* | Function value of an operator abstraction whose domain is a set of functions with given domain and range. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) & ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) ⇒ ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → (𝐹‘𝐴) = 𝐶) | ||
| Theorem | fnopabco 37702* | Composition of a function with a function abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) & ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} & ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} ⇒ ⊢ (𝐻 Fn 𝐶 → 𝐺 = (𝐻 ∘ 𝐹)) | ||
| Theorem | opropabco 37703* | Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) & ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} & ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} ⇒ ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) | ||
| Theorem | cocnv 37704 | Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) | ||
| Theorem | f1ocan1fv 37705 | Cancel a composition by a bijection by preapplying the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐹 ∘ 𝐺)‘(◡𝐺‘𝑋)) = (𝐹‘𝑋)) | ||
| Theorem | f1ocan2fv 37706 | Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ ◡𝐺)‘(𝐺‘𝑋)) = (𝐹‘𝑋)) | ||
| Theorem | inixp 37707* | Intersection of Cartesian products over the same base set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (X𝑥 ∈ 𝐴 𝐵 ∩ X𝑥 ∈ 𝐴 𝐶) = X𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) | ||
| Theorem | upixp 37708* | Universal property of the indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝑋 = X𝑏 ∈ 𝐴 (𝐶‘𝑏) & ⊢ 𝑃 = (𝑤 ∈ 𝐴 ↦ (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑤))) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → ∃!ℎ(ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) | ||
| Theorem | abrexdom 37709* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) | ||
| Theorem | abrexdom2 37710* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = 𝐵} ≼ 𝐴) | ||
| Theorem | ac6gf 37711* | Axiom of Choice. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | indexa 37712* | If for every element of an indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐵 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑐(𝑐 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑐 𝜑 ∧ ∀𝑦 ∈ 𝑐 ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | indexdom 37713* | If for every element of an indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a subset of 𝐵 consisting only of those elements which are indexed by 𝐴, and which is dominated by the set 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑐((𝑐 ≼ 𝐴 ∧ 𝑐 ⊆ 𝐵) ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑐 𝜑 ∧ ∀𝑦 ∈ 𝑐 ∃𝑥 ∈ 𝐴 𝜑))) | ||
| Theorem | frinfm 37714* | A subset of a well-founded set has an infimum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) | ||
| Theorem | welb 37715* | A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (◡𝑅 Or 𝐵 ∧ ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) | ||
| Theorem | supex2g 37716 | Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V) | ||
| Theorem | supclt 37717* | Closure of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Or 𝐴 ∧ ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | supubt 37718* | Upper bound property of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Or 𝐴 ∧ ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) | ||
| Theorem | filbcmb 37719* | Combine a finite set of lower bounds. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 ≤ 𝑧 → 𝜑) → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 ≤ 𝑧 → ∀𝑥 ∈ 𝐴 𝜑))) | ||
| Theorem | fzmul 37720 | Membership of a product in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)))) | ||
| Theorem | sdclem2 37721* | Lemma for sdc 37723. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) & ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) & ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) & ⊢ 𝐽 = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} & ⊢ 𝐹 = (𝑤 ∈ 𝑍, 𝑥 ∈ 𝐽 ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) & ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐺:𝑍⟶𝐽) & ⊢ (𝜑 → (𝐺‘𝑀):(𝑀...𝑀)⟶𝐴) & ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘(𝑤 + 1)) ∈ (𝑤𝐹(𝐺‘𝑤))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) | ||
| Theorem | sdclem1 37722* | Lemma for sdc 37723. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) & ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) & ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) & ⊢ 𝐽 = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} & ⊢ 𝐹 = (𝑤 ∈ 𝑍, 𝑥 ∈ 𝐽 ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) | ||
| Theorem | sdc 37723* | Strong dependent choice. Suppose we may choose an element of 𝐴 such that property 𝜓 holds, and suppose that if we have already chosen the first 𝑘 elements (represented here by a function from 1...𝑘 to 𝐴), we may choose another element so that all 𝑘 + 1 elements taken together have property 𝜓. Then there exists an infinite sequence of elements of 𝐴 such that the first 𝑛 terms of this sequence satisfy 𝜓 for all 𝑛. This theorem allows to construct infinite sequences where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 3-Jun-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) & ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) & ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) | ||
| Theorem | fdc 37724* | Finite version of dependent choice. Construct a function whose value depends on the previous function value, except at a final point at which no new value can be chosen. The final hypothesis ensures that the process will terminate. The proof does not use the Axiom of Choice. (Contributed by Jeff Madsen, 18-Jun-2010.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = (𝑓‘𝑘) → (𝜓 ↔ 𝜒)) & ⊢ (𝑎 = (𝑓‘𝑛) → (𝜃 ↔ 𝜏)) & ⊢ (𝜂 → 𝐶 ∈ 𝐴) & ⊢ (𝜂 → 𝑅 Fr 𝐴) & ⊢ ((𝜂 ∧ 𝑎 ∈ 𝐴) → (𝜃 ∨ ∃𝑏 ∈ 𝐴 𝜑)) & ⊢ (((𝜂 ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑏𝑅𝑎) ⇒ ⊢ (𝜂 → ∃𝑛 ∈ 𝑍 ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓‘𝑀) = 𝐶 ∧ 𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) | ||
| Theorem | fdc1 37725* | Variant of fdc 37724 with no specified base value. (Contributed by Jeff Madsen, 18-Jun-2010.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ (𝑎 = (𝑓‘𝑀) → (𝜁 ↔ 𝜎)) & ⊢ (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = (𝑓‘𝑘) → (𝜓 ↔ 𝜒)) & ⊢ (𝑎 = (𝑓‘𝑛) → (𝜃 ↔ 𝜏)) & ⊢ (𝜂 → ∃𝑎 ∈ 𝐴 𝜁) & ⊢ (𝜂 → 𝑅 Fr 𝐴) & ⊢ ((𝜂 ∧ 𝑎 ∈ 𝐴) → (𝜃 ∨ ∃𝑏 ∈ 𝐴 𝜑)) & ⊢ (((𝜂 ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑏𝑅𝑎) ⇒ ⊢ (𝜂 → ∃𝑛 ∈ 𝑍 ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎 ∧ 𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) | ||
| Theorem | seqpo 37726* | Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Po 𝐴 ∧ 𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹‘𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘(𝑚 + 1))(𝐹‘𝑚)𝑅(𝐹‘𝑛))) | ||
| Theorem | incsequz 37727* | An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴)) | ||
| Theorem | incsequz2 37728* | An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ (ℤ≥‘𝐴)) | ||
| Theorem | nnubfi 37729* | A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.) |
| ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) | ||
| Theorem | nninfnub 37730* | An infinite set of positive integers is unbounded above. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.) |
| ⊢ ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑥} ≠ ∅) | ||
| Theorem | subspopn 37731 | An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (𝐽 ↾t 𝐴)) | ||
| Theorem | neificl 37732 | Neighborhoods are closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Nov-2013.) |
| ⊢ (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → ∩ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | lpss2 37733 | Limit points of a subset are limit points of the larger set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((limPt‘𝐽)‘𝐵) ⊆ ((limPt‘𝐽)‘𝐴)) | ||
| Theorem | metf1o 37734* | Use a bijection with a metric space to construct a metric on a set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑁 = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑌 ↦ ((𝐹‘𝑥)𝑀(𝐹‘𝑦))) ⇒ ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) → 𝑁 ∈ (Met‘𝑌)) | ||
| Theorem | blssp 37735 | A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑆 × 𝑆)) ⇒ ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) | ||
| Theorem | mettrifi 37736* | Generalized triangle inequality for arbitrary finite sums. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝐹‘𝑀)𝐷(𝐹‘𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) | ||
| Theorem | lmclim2 37737* | A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) | ||
| Theorem | geomcau 37738* | If the distance between consecutive points in a sequence is bounded by a geometric sequence, then the sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) | ||
| Theorem | caures 37739 | The restriction of a Cauchy sequence to an upper set of integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝑋 ↑pm ℂ)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ↾ 𝑍) ∈ (Cau‘𝐷))) | ||
| Theorem | caushft 37740* | A shifted Cauchy sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝑁))) & ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) & ⊢ (𝜑 → 𝐺:𝑊⟶𝑋) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Cau‘𝐷)) | ||
| Theorem | constcncf 37741* | A constant function is a continuous function on ℂ. (Contributed by Jeff Madsen, 2-Sep-2009.) (Moved into main set.mm as cncfmptc 24821 and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | cnres2 37742* | The restriction of a continuous function to a subset is continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t 𝐵))) | ||
| Theorem | cnresima 37743 | A continuous function is continuous onto its image. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) | ||
| Theorem | cncfres 37744* | A continuous function on complex numbers restricted to a subset. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐴 ⊆ ℂ & ⊢ 𝐵 ⊆ ℂ & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ 𝐹 ∈ (ℂ–cn→ℂ) & ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) & ⊢ 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) ⇒ ⊢ 𝐺 ∈ (𝐽 Cn 𝐾) | ||
| Syntax | ctotbnd 37745 | Extend class notation with the class of totally bounded metric spaces. |
| class TotBnd | ||
| Syntax | cbnd 37746 | Extend class notation with the class of bounded metric spaces. |
| class Bnd | ||
| Definition | df-totbnd 37747* | Define the class of totally bounded metrics. A metric space is totally bounded iff it can be covered by a finite number of balls of any given radius. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ TotBnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑))}) | ||
| Theorem | istotbnd 37748* | The predicate "is a totally bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | ||
| Theorem | istotbnd2 37749* | The predicate "is a totally bounded metric space." (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ (Met‘𝑋) → (𝑀 ∈ (TotBnd‘𝑋) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | ||
| Theorem | istotbnd3 37750* | A metric space is totally bounded iff there is a finite ε-net for every positive ε. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) | ||
| Theorem | totbndmet 37751 | The predicate "totally bounded" implies 𝑀 is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) | ||
| Theorem | 0totbnd 37752 | The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) | ||
| Theorem | sstotbnd2 37753* | Condition for a subset of a metric space to be totally bounded. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) | ||
| Theorem | sstotbnd 37754* | Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | ||
| Theorem | sstotbnd3 37755* | Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ 𝒫 𝑋(𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))) | ||
| Theorem | totbndss 37756 | A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆)) | ||
| Theorem | equivtotbnd 37757* | If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then total boundedness of 𝑀 implies total boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ (TotBnd‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) ⇒ ⊢ (𝜑 → 𝑁 ∈ (TotBnd‘𝑋)) | ||
| Definition | df-bnd 37758* | Define the class of bounded metrics. A metric space is bounded iff it can be covered by a single ball. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ Bnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)}) | ||
| Theorem | isbnd 37759* | The predicate "is a bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) | ||
| Theorem | bndmet 37760 | A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) | ||
| Theorem | isbndx 37761* | A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) | ||
| Theorem | isbnd2 37762* | The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) | ||
| Theorem | isbnd3 37763* | A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) | ||
| Theorem | isbnd3b 37764* | A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) | ||
| Theorem | bndss 37765 | A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆)) | ||
| Theorem | blbnd 37766 | A ball is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 15-Jan-2014.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅))) | ||
| Theorem | ssbnd 37767* | A subset of a metric space is bounded iff it is contained in a ball around 𝑃, for any 𝑃 in the larger space. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ (Bnd‘𝑌) ↔ ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) | ||
| Theorem | totbndbnd 37768 | A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd 37748 to only require that 𝑀 be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +∞) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Bnd‘𝑋)) | ||
| Theorem | equivbnd 37769* | If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then boundedness of 𝑀 implies boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ (Bnd‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) ⇒ ⊢ (𝜑 → 𝑁 ∈ (Bnd‘𝑋)) | ||
| Theorem | bnd2lem 37770 | Lemma for equivbnd2 37771 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.) |
| ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) | ||
| Theorem | equivbnd2 37771* | If balls are totally bounded in the metric 𝑀, then balls are totally bounded in the equivalent metric 𝑁. (Contributed by Mario Carneiro, 15-Sep-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦))) & ⊢ 𝐶 = (𝑀 ↾ (𝑌 × 𝑌)) & ⊢ 𝐷 = (𝑁 ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌))) ⇒ ⊢ (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌))) | ||
| Theorem | prdsbnd 37772* | The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘(𝑅‘𝑥)) & ⊢ 𝐸 = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Bnd‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Bnd‘𝐵)) | ||
| Theorem | prdstotbnd 37773* | The product metric over finite index set is totally bounded if all the factors are totally bounded. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘(𝑅‘𝑥)) & ⊢ 𝐸 = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (TotBnd‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (TotBnd‘𝐵)) | ||
| Theorem | prdsbnd2 37774* | If balls are totally bounded in each factor, then balls are bounded in a metric product. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘(𝑅‘𝑥)) & ⊢ 𝐸 = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ 𝐶 = (𝐷 ↾ (𝐴 × 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Met‘𝑉)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) ⇒ ⊢ (𝜑 → (𝐶 ∈ (TotBnd‘𝐴) ↔ 𝐶 ∈ (Bnd‘𝐴))) | ||
| Theorem | cntotbnd 37775 | A subset of the complex numbers is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋)) | ||
| Theorem | cnpwstotbnd 37776 | A subset of 𝐴↑𝐼, where 𝐴 ⊆ ℂ, is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ 𝑌 = ((ℂfld ↾s 𝐴) ↑s 𝐼) & ⊢ 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋)) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))) | ||
| Syntax | cismty 37777 | Extend class notation with the class of metric space isometries. |
| class Ismty | ||
| Definition | df-ismty 37778* | Define a function which takes two metric spaces and returns the set of isometries between the spaces. An isometry is a bijection which preserves distance. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ Ismty = (𝑚 ∈ ∪ ran ∞Met, 𝑛 ∈ ∪ ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom 𝑚–1-1-onto→dom dom 𝑛 ∧ ∀𝑥 ∈ dom dom 𝑚∀𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓‘𝑥)𝑛(𝑓‘𝑦)))}) | ||
| Theorem | ismtyval 37779* | The set of isometries between two metric spaces. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) = {𝑓 ∣ (𝑓:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝑓‘𝑥)𝑁(𝑓‘𝑦)))}) | ||
| Theorem | isismty 37780* | The condition "is an isometry". (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) | ||
| Theorem | ismtycnv 37781 | The inverse of an isometry is an isometry. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → ◡𝐹 ∈ (𝑁 Ismty 𝑀))) | ||
| Theorem | ismtyima 37782 | The image of a ball under an isometry is another ball. (Contributed by Jeff Madsen, 31-Jan-2014.) |
| ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) = ((𝐹‘𝑃)(ball‘𝑁)𝑅)) | ||
| Theorem | ismtyhmeolem 37783 | Lemma for ismtyhmeo 37784. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑀 Ismty 𝑁)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | ismtyhmeo 37784 | An isometry is a homeomorphism on the induced topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) ⇒ ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) ⊆ (𝐽Homeo𝐾)) | ||
| Theorem | ismtybndlem 37785 | Lemma for ismtybnd 37786. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 19-Jan-2014.) |
| ⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌))) | ||
| Theorem | ismtybnd 37786 | Isometries preserve boundedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 19-Jan-2014.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) ↔ 𝑁 ∈ (Bnd‘𝑌))) | ||
| Theorem | ismtyres 37787 | A restriction of an isometry is an isometry. The condition 𝐴 ⊆ 𝑋 is not necessary but makes the proof easier. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐵 = (𝐹 “ 𝐴) & ⊢ 𝑆 = (𝑀 ↾ (𝐴 × 𝐴)) & ⊢ 𝑇 = (𝑁 ↾ (𝐵 × 𝐵)) ⇒ ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → (𝐹 ↾ 𝐴) ∈ (𝑆 Ismty 𝑇)) | ||
| Theorem | heibor1lem 37788 | Lemma for heibor1 37789. A compact metric space is complete. This proof works by considering the collection cls(𝐹 “ (ℤ≥‘𝑛)) for each 𝑛 ∈ ℕ, which has the finite intersection property because any finite intersection of upper integer sets is another upper integer set, so any finite intersection of the image closures will contain (𝐹 “ (ℤ≥‘𝑚)) for some 𝑚. Thus, by compactness, the intersection contains a point 𝑦, which must then be the convergent point of 𝐹. (Contributed by Jeff Madsen, 17-Jan-2014.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
| Theorem | heibor1 37789 | One half of heibor 37800, that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet 25235 and total boundedness here, which follows trivially from the fact that the set of all 𝑟-balls is an open cover of 𝑋, so finitely many cover 𝑋. (Contributed by Jeff Madsen, 16-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋))) | ||
| Theorem | heiborlem1 37790* | Lemma for heibor 37800. We work with a fixed open cover 𝑈 throughout. The set 𝐾 is the set of all subsets of 𝑋 that admit no finite subcover of 𝑈. (We wish to prove that 𝐾 is empty.) If a set 𝐶 has no finite subcover, then any finite cover of 𝐶 must contain a set that also has no finite subcover. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐾) → ∃𝑥 ∈ 𝐴 𝐵 ∈ 𝐾) | ||
| Theorem | heiborlem2 37791* | Lemma for heibor 37800. Substitutions for the set 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾)) | ||
| Theorem | heiborlem3 37792* | Lemma for heibor 37800. Using countable choice ax-cc 10348, we have fixed in advance a collection of finite 2↑-𝑛 nets (𝐹‘𝑛) for 𝑋 (note that an 𝑟-net is a set of points in 𝑋 whose 𝑟 -balls cover 𝑋). The set 𝐺 is the subset of these points whose corresponding balls have no finite subcover (i.e. in the set 𝐾). If the theorem was false, then 𝑋 would be in 𝐾, and so some ball at each level would also be in 𝐾. But we can say more than this; given a ball (𝑦𝐵𝑛) on level 𝑛, since level 𝑛 + 1 covers the space and thus also (𝑦𝐵𝑛), using heiborlem1 37790 there is a ball on the next level whose intersection with (𝑦𝐵𝑛) also has no finite subcover. Now since the set 𝐺 is a countable union of finite sets, it is countable (which needs ax-cc 10348 via iunctb 10487), and so we can apply ax-cc 10348 to 𝐺 directly to get a function from 𝐺 to itself, which points from each ball in 𝐾 to a ball on the next level in 𝐾, and such that the intersection between these balls is also in 𝐾. (Contributed by Jeff Madsen, 18-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) ⇒ ⊢ (𝜑 → ∃𝑔∀𝑥 ∈ 𝐺 ((𝑔‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | ||
| Theorem | heiborlem4 37793* | Lemma for heibor 37800. Using the function 𝑇 constructed in heiborlem3 37792, construct an infinite path in 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → (𝑆‘𝐴)𝐺𝐴) | ||
| Theorem | heiborlem5 37794* | Lemma for heibor 37800. The function 𝑀 is a set of point-and-radius pairs suitable for application to caubl 25224. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) ⇒ ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) | ||
| Theorem | heiborlem6 37795* | Lemma for heibor 37800. Since the sequence of balls connected by the function 𝑇 ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) | ||
| Theorem | heiborlem7 37796* | Lemma for heibor 37800. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) ⇒ ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 | ||
| Theorem | heiborlem8 37797* | Lemma for heibor 37800. The previous lemmas establish that the sequence 𝑀 is Cauchy, so using completeness we now consider the convergent point 𝑌. By assumption, 𝑈 is an open cover, so 𝑌 is an element of some 𝑍 ∈ 𝑈, and some ball centered at 𝑌 is contained in 𝑍. But the sequence contains arbitrarily small balls close to 𝑌, so some element ball(𝑀‘𝑛) of the sequence is contained in 𝑍. And finally we arrive at a contradiction, because {𝑍} is a finite subcover of 𝑈 that covers ball(𝑀‘𝑛), yet ball(𝑀‘𝑛) ∈ 𝐾. For convenience, we write this contradiction as 𝜑 → 𝜓 where 𝜑 is all the accumulated hypotheses and 𝜓 is anything at all. (Contributed by Jeff Madsen, 22-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ 𝑌 ∈ V & ⊢ (𝜑 → 𝑌 ∈ 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → (1st ∘ 𝑀)(⇝𝑡‘𝐽)𝑌) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | heiborlem9 37798* | Lemma for heibor 37800. Discharge the hypotheses of heiborlem8 37797 by applying caubl 25224 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → ∪ 𝑈 = 𝑋) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | heiborlem10 37799* | Lemma for heibor 37800. The last remaining piece of the proof is to find an element 𝐶 such that 𝐶𝐺0, i.e. 𝐶 is an element of (𝐹‘0) that has no finite subcover, which is true by heiborlem1 37790, since (𝐹‘0) is a finite cover of 𝑋, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of 𝑈 that covers 𝑋, i.e. 𝑋 is compact. (Contributed by Jeff Madsen, 22-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) ⇒ ⊢ ((𝜑 ∧ (𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∪ 𝐽 = ∪ 𝑣) | ||
| Theorem | heibor 37800 | Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 37789 and heiborlem1 37790 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |