Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc711 | Structured version Visualization version GIF version |
Description: Proof of a single axiom that can replace both ax-c7 36899 and ax-11 2154. See axc711toc7 36930 and axc711to11 36931 for the rederivation of those axioms. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc711 | ⊢ (¬ ∀𝑥 ¬ ∀𝑦∀𝑥𝜑 → ∀𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-11 2154 | . . . . 5 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
2 | 1 | con3i 154 | . . . 4 ⊢ (¬ ∀𝑥∀𝑦𝜑 → ¬ ∀𝑦∀𝑥𝜑) |
3 | 2 | alimi 1814 | . . 3 ⊢ (∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑦∀𝑥𝜑) |
4 | 3 | con3i 154 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑦∀𝑥𝜑 → ¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
5 | ax-c7 36899 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦𝜑) | |
6 | 4, 5 | syl 17 | 1 ⊢ (¬ ∀𝑥 ¬ ∀𝑦∀𝑥𝜑 → ∀𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-11 2154 ax-c7 36899 |
This theorem is referenced by: axc711toc7 36930 axc711to11 36931 |
Copyright terms: Public domain | W3C validator |