Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-c7 Structured version   Visualization version   GIF version

Axiom ax-c7 36826
Description: Axiom of Quantified Negation. This axiom is used to manipulate negated quantifiers. Equivalent to axiom scheme C7' in [Megill] p. 448 (p. 16 of the preprint). An alternate axiomatization could use axc5c711 36859 in place of ax-c5 36824, ax-c7 36826, and ax-11 2156.

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc7 2315. (Contributed by NM, 10-Jan-1993.) (New usage is discouraged.)

Assertion
Ref Expression
ax-c7 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)

Detailed syntax breakdown of Axiom ax-c7
StepHypRef Expression
1 wph . . . . . 6 wff 𝜑
2 vx . . . . . 6 setvar 𝑥
31, 2wal 1537 . . . . 5 wff 𝑥𝜑
43wn 3 . . . 4 wff ¬ ∀𝑥𝜑
54, 2wal 1537 . . 3 wff 𝑥 ¬ ∀𝑥𝜑
65wn 3 . 2 wff ¬ ∀𝑥 ¬ ∀𝑥𝜑
76, 1wi 4 1 wff (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
This axiom is referenced by:  ax10fromc7  36836  ax6fromc10  36837  equid1  36840  axc5c7  36852  axc711  36855  axc5c711  36859  equid1ALT  36866
  Copyright terms: Public domain W3C validator