Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bi12imp3 | Structured version Visualization version GIF version |
Description: Similar to 3imp 1110 except all but innermost implication are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) |
Ref | Expression |
---|---|
bi12imp3.1 | ⊢ (𝜑 ↔ (𝜓 ↔ (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
bi12imp3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi12imp3.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ↔ (𝜒 → 𝜃))) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 → 𝜃))) |
3 | 2 | bi23imp13 42111 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |