Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimpi | Structured version Visualization version GIF version |
Description: Infer an implication from a logical equivalence. Inference associated with biimp 214. (Contributed by NM, 29-Dec-1992.) |
Ref | Expression |
---|---|
biimpi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
biimpi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | biimp 214 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
Copyright terms: Public domain | W3C validator |