Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bicontr Structured version   Visualization version   GIF version

Theorem bicontr 36165
Description: Biconditional of its own negation is a contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Assertion
Ref Expression
bicontr ((¬ 𝜑𝜑) ↔ ⊥)

Proof of Theorem bicontr
StepHypRef Expression
1 biid 260 . . 3 (𝜑𝜑)
2 notbinot1 36164 . . 3 (¬ (¬ 𝜑𝜑) ↔ (𝜑𝜑))
31, 2mpbir 230 . 2 ¬ (¬ 𝜑𝜑)
43bifal 1555 1 ((¬ 𝜑𝜑) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator