MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bifal Structured version   Visualization version   GIF version

Theorem bifal 1555
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bifal.1 ¬ 𝜑
Assertion
Ref Expression
bifal (𝜑 ↔ ⊥)

Proof of Theorem bifal
StepHypRef Expression
1 bifal.1 . 2 ¬ 𝜑
2 fal 1553 . 2 ¬ ⊥
31, 22false 376 1 (𝜑 ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552
This theorem is referenced by:  falantru  1574  trunorfalOLD  1590  dfnul4  4258  dfnul2  4259  dfnul4OLD  4263  abf  4336  ralnralall  4449  tgcgr4  26892  frgrregord013  28759  nrmo  34599  bj-ntrufal  34750  bicontr  36238  aibnbaif  44402  aifftbifffaibif  44416  atnaiana  44418
  Copyright terms: Public domain W3C validator