MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bifal Structured version   Visualization version   GIF version

Theorem bifal 1538
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bifal.1 ¬ 𝜑
Assertion
Ref Expression
bifal (𝜑 ↔ ⊥)

Proof of Theorem bifal
StepHypRef Expression
1 bifal.1 . 2 ¬ 𝜑
2 fal 1536 . 2 ¬ ⊥
31, 22false 377 1 (𝜑 ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wfal 1534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-tru 1525  df-fal 1535
This theorem is referenced by:  falantru  1557  trunortru  1571  trunorfal  1572  ralnralall  4372  tgcgr4  25999  frgrregord013  27866  nrmo  33367  bj-df-nul  33946  bicontr  34890  aibnbaif  42684  aifftbifffaibif  42698  atnaiana  42700
  Copyright terms: Public domain W3C validator