Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bifal | Structured version Visualization version GIF version |
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
bifal.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
bifal | ⊢ (𝜑 ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bifal.1 | . 2 ⊢ ¬ 𝜑 | |
2 | fal 1553 | . 2 ⊢ ¬ ⊥ | |
3 | 1, 2 | 2false 376 | 1 ⊢ (𝜑 ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: falantru 1574 trunorfalOLD 1590 dfnul4 4258 dfnul2 4259 dfnul4OLD 4263 abf 4336 ralnralall 4449 tgcgr4 26892 frgrregord013 28759 nrmo 34599 bj-ntrufal 34750 bicontr 36238 aibnbaif 44402 aifftbifffaibif 44416 atnaiana 44418 |
Copyright terms: Public domain | W3C validator |