![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bifal | Structured version Visualization version GIF version |
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
bifal.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
bifal | ⊢ (𝜑 ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bifal.1 | . 2 ⊢ ¬ 𝜑 | |
2 | fal 1536 | . 2 ⊢ ¬ ⊥ | |
3 | 1, 2 | 2false 377 | 1 ⊢ (𝜑 ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 ⊥wfal 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-tru 1525 df-fal 1535 |
This theorem is referenced by: falantru 1557 trunortru 1571 trunorfal 1572 ralnralall 4372 tgcgr4 25999 frgrregord013 27866 nrmo 33367 bj-df-nul 33946 bicontr 34890 aibnbaif 42684 aifftbifffaibif 42698 atnaiana 42700 |
Copyright terms: Public domain | W3C validator |