MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bifal Structured version   Visualization version   GIF version

Theorem bifal 1559
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bifal.1 ¬ 𝜑
Assertion
Ref Expression
bifal (𝜑 ↔ ⊥)

Proof of Theorem bifal
StepHypRef Expression
1 bifal.1 . 2 ¬ 𝜑
2 fal 1557 . 2 ¬ ⊥
31, 22false 379 1 (𝜑 ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wfal 1555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-tru 1546  df-fal 1556
This theorem is referenced by:  falantru  1578  trunortruOLD  1593  trunorfalOLD  1595  dfnul4  4239  dfnul2  4240  dfnul4OLD  4244  abf  4317  ralnralall  4430  tgcgr4  26622  frgrregord013  28478  nrmo  34336  bj-ntrufal  34487  bicontr  35975  aibnbaif  44074  aifftbifffaibif  44088  atnaiana  44090
  Copyright terms: Public domain W3C validator