MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bifal Structured version   Visualization version   GIF version

Theorem bifal 1553
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bifal.1 ¬ 𝜑
Assertion
Ref Expression
bifal (𝜑 ↔ ⊥)

Proof of Theorem bifal
StepHypRef Expression
1 bifal.1 . 2 ¬ 𝜑
2 fal 1551 . 2 ¬ ⊥
31, 22false 375 1 (𝜑 ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wfal 1549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-tru 1540  df-fal 1550
This theorem is referenced by:  falantru  1572  dfnul4  4341  dfnul2  4342  abf  4412  ralnralall  4521  tgcgr4  28554  frgrregord013  30424  nrmo  36393  bj-ntrufal  36552  bicontr  38067  aibnbaif  46857  aifftbifffaibif  46871  atnaiana  46873
  Copyright terms: Public domain W3C validator