MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bifal Structured version   Visualization version   GIF version

Theorem bifal 1557
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bifal.1 ¬ 𝜑
Assertion
Ref Expression
bifal (𝜑 ↔ ⊥)

Proof of Theorem bifal
StepHypRef Expression
1 bifal.1 . 2 ¬ 𝜑
2 fal 1555 . 2 ¬ ⊥
31, 22false 375 1 (𝜑 ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wfal 1553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-tru 1544  df-fal 1554
This theorem is referenced by:  falantru  1576  dfnul4  4280  dfnul2  4281  abf  4351  ralnralall  4460  tgcgr4  28504  frgrregord013  30367  nrmo  36444  bj-ntrufal  36603  bicontr  38120  aibnbaif  46938  aifftbifffaibif  46952  atnaiana  46954
  Copyright terms: Public domain W3C validator