Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bifal | Structured version Visualization version GIF version |
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
bifal.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
bifal | ⊢ (𝜑 ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bifal.1 | . 2 ⊢ ¬ 𝜑 | |
2 | fal 1557 | . 2 ⊢ ¬ ⊥ | |
3 | 1, 2 | 2false 379 | 1 ⊢ (𝜑 ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ⊥wfal 1555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-tru 1546 df-fal 1556 |
This theorem is referenced by: falantru 1578 trunortruOLD 1593 trunorfalOLD 1595 dfnul4 4239 dfnul2 4240 dfnul4OLD 4244 abf 4317 ralnralall 4430 tgcgr4 26622 frgrregord013 28478 nrmo 34336 bj-ntrufal 34487 bicontr 35975 aibnbaif 44074 aifftbifffaibif 44088 atnaiana 44090 |
Copyright terms: Public domain | W3C validator |