Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > impor | Structured version Visualization version GIF version |
Description: An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
Ref | Expression |
---|---|
impor | ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor 850 | . 2 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ (¬ 𝜑 ∨ (𝜓 ∨ 𝜒))) | |
2 | orass 919 | . 2 ⊢ (((¬ 𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (¬ 𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |