| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > impor | Structured version Visualization version GIF version | ||
| Description: An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
| Ref | Expression |
|---|---|
| impor | ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imor 853 | . 2 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ (¬ 𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 2 | orass 921 | . 2 ⊢ (((¬ 𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (¬ 𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |