Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  impor Structured version   Visualization version   GIF version

Theorem impor 36239
Description: An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Assertion
Ref Expression
impor ((𝜑 → (𝜓𝜒)) ↔ ((¬ 𝜑𝜓) ∨ 𝜒))

Proof of Theorem impor
StepHypRef Expression
1 imor 850 . 2 ((𝜑 → (𝜓𝜒)) ↔ (¬ 𝜑 ∨ (𝜓𝜒)))
2 orass 919 . 2 (((¬ 𝜑𝜓) ∨ 𝜒) ↔ (¬ 𝜑 ∨ (𝜓𝜒)))
31, 2bitr4i 277 1 ((𝜑 → (𝜓𝜒)) ↔ ((¬ 𝜑𝜓) ∨ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator