Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-alrimd Structured version   Visualization version   GIF version

Theorem bj-alrimd 34801
Description: A slightly more general alrimd 2208. A common usage will have 𝜑 substituted for 𝜓 and 𝜒 substituted for 𝜃, giving a form closer to alrimd 2208. (Contributed by BJ, 25-Dec-2023.)
Hypotheses
Ref Expression
bj-alrimd.ph (𝜑 → ∀𝑥𝜓)
bj-alrimd.th (𝜑 → (𝜒 → ∀𝑥𝜃))
bj-alrimd.maj (𝜓 → (𝜃𝜏))
Assertion
Ref Expression
bj-alrimd (𝜑 → (𝜒 → ∀𝑥𝜏))

Proof of Theorem bj-alrimd
StepHypRef Expression
1 bj-alrimd.th . 2 (𝜑 → (𝜒 → ∀𝑥𝜃))
2 bj-alrimd.ph . . 3 (𝜑 → ∀𝑥𝜓)
3 bj-alrimd.maj . . 3 (𝜓 → (𝜃𝜏))
42, 3sylg 1825 . 2 (𝜑 → ∀𝑥(𝜃𝜏))
5 bj-alrimg 34800 . 2 ((𝜒 → ∀𝑥𝜃) → (∀𝑥(𝜃𝜏) → (𝜒 → ∀𝑥𝜏)))
61, 4, 5sylc 65 1 (𝜑 → (𝜒 → ∀𝑥𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1798  ax-4 1812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator