![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylg | Structured version Visualization version GIF version |
Description: A syllogism combined with generalization. Inference associated with sylgt 1820. General form of alrimih 1822. (Contributed by NM, 9-Jan-1993.) Extract from proof of alrimih 1822. (Revised by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
sylg.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
sylg.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylg | ⊢ (𝜑 → ∀𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylg.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
2 | sylg.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 2 | alimi 1809 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥𝜒) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∀𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1793 ax-4 1807 |
This theorem is referenced by: alrimih 1822 ax9ALT 2735 raleqbidvvOLD 3343 csbied 3959 rzal 4532 ssrel 5806 ssrelOLD 5807 kmlem1 10220 bnj1476 34823 bnj1533 34828 bj-alrimd 36586 bj-exlimd 36591 bj-ax12ig 36602 axc11n11 36648 bj-modalbe 36654 bj-modal4 36680 bj-wnfanf 36685 bj-wnfenf 36686 bj-19.12 36727 bj-pm11.53vw 36742 mpobi123f 38122 mptbi12f 38126 ismnushort 44270 setrec2mpt 48789 |
Copyright terms: Public domain | W3C validator |