MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylg Structured version   Visualization version   GIF version

Theorem sylg 1820
Description: A syllogism combined with generalization. Inference associated with sylgt 1819. General form of alrimih 1821. (Contributed by NM, 9-Jan-1993.) Extract from proof of alrimih 1821. (Revised by BJ, 4-Oct-2019.)
Hypotheses
Ref Expression
sylg.1 (𝜑 → ∀𝑥𝜓)
sylg.2 (𝜓𝜒)
Assertion
Ref Expression
sylg (𝜑 → ∀𝑥𝜒)

Proof of Theorem sylg
StepHypRef Expression
1 sylg.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sylg.2 . . 3 (𝜓𝜒)
32alimi 1808 . 2 (∀𝑥𝜓 → ∀𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1792  ax-4 1806
This theorem is referenced by:  alrimih  1821  ax9ALT  2730  raleqbidvvOLD  3333  csbied  3946  rzal  4515  ssrel  5795  ssrelOLD  5796  kmlem1  10189  bnj1476  34840  bnj1533  34845  bj-alrimd  36603  bj-exlimd  36608  bj-ax12ig  36619  axc11n11  36665  bj-modalbe  36671  bj-modal4  36697  bj-wnfanf  36702  bj-wnfenf  36703  bj-19.12  36744  bj-pm11.53vw  36759  mpobi123f  38149  mptbi12f  38153  ismnushort  44297  setrec2mpt  48928
  Copyright terms: Public domain W3C validator