MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylg Structured version   Visualization version   GIF version

Theorem sylg 1825
Description: A syllogism combined with generalization. Inference associated with sylgt 1824. General form of alrimih 1826. (Contributed by BJ, 4-Oct-2019.)
Hypotheses
Ref Expression
sylg.1 (𝜑 → ∀𝑥𝜓)
sylg.2 (𝜓𝜒)
Assertion
Ref Expression
sylg (𝜑 → ∀𝑥𝜒)

Proof of Theorem sylg
StepHypRef Expression
1 sylg.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sylg.2 . . 3 (𝜓𝜒)
32alimi 1813 . 2 (∀𝑥𝜓 → ∀𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1797  ax-4 1811
This theorem is referenced by:  alrimih  1826  ax9ALT  2727  raleqbidvvOLD  3330  csbied  3930  rzal  4507  ssrel  5780  ssrelOLD  5781  kmlem1  10141  bnj1476  33846  bnj1533  33851  bj-alrimd  35485  bj-exlimd  35490  bj-ax12ig  35501  axc11n11  35548  bj-modalbe  35554  bj-modal4  35580  bj-wnfanf  35585  bj-wnfenf  35586  bj-19.12  35627  bj-pm11.53vw  35642  mpobi123f  37018  mptbi12f  37022  ismnushort  43045  setrec2mpt  47695
  Copyright terms: Public domain W3C validator