MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylg Structured version   Visualization version   GIF version

Theorem sylg 1826
Description: A syllogism combined with generalization. Inference associated with sylgt 1825. General form of alrimih 1827. (Contributed by BJ, 4-Oct-2019.)
Hypotheses
Ref Expression
sylg.1 (𝜑 → ∀𝑥𝜓)
sylg.2 (𝜓𝜒)
Assertion
Ref Expression
sylg (𝜑 → ∀𝑥𝜒)

Proof of Theorem sylg
StepHypRef Expression
1 sylg.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sylg.2 . . 3 (𝜓𝜒)
32alimi 1815 . 2 (∀𝑥𝜓 → ∀𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1799  ax-4 1813
This theorem is referenced by:  alrimih  1827  ax9ALT  2733  raleqbidvv  3329  csbied  3866  rzal  4436  ssrel  5683  kmlem1  9837  bnj1476  32727  bnj1533  32732  bj-alrimd  34728  bj-exlimd  34733  bj-ax12ig  34744  axc11n11  34791  bj-modalbe  34797  bj-modal4  34823  bj-wnfanf  34828  bj-wnfenf  34829  bj-19.12  34870  bj-pm11.53vw  34885  mpobi123f  36247  mptbi12f  36251  ismnushort  41808
  Copyright terms: Public domain W3C validator