MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylg Structured version   Visualization version   GIF version

Theorem sylg 1823
Description: A syllogism combined with generalization. Inference associated with sylgt 1822. General form of alrimih 1824. (Contributed by NM, 9-Jan-1993.) Extract from proof of alrimih 1824. (Revised by BJ, 4-Oct-2019.)
Hypotheses
Ref Expression
sylg.1 (𝜑 → ∀𝑥𝜓)
sylg.2 (𝜓𝜒)
Assertion
Ref Expression
sylg (𝜑 → ∀𝑥𝜒)

Proof of Theorem sylg
StepHypRef Expression
1 sylg.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sylg.2 . . 3 (𝜓𝜒)
32alimi 1811 . 2 (∀𝑥𝜓 → ∀𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1795  ax-4 1809
This theorem is referenced by:  alrimih  1824  ax9ALT  2724  raleqbidvvOLD  3308  csbied  3898  rzal  4472  ssrel  5745  ssrelOLD  5746  kmlem1  10104  bnj1476  34837  bnj1533  34842  bj-alrimd  36608  bj-exlimd  36613  bj-ax12ig  36624  axc11n11  36670  bj-modalbe  36676  bj-modal4  36702  bj-wnfanf  36707  bj-wnfenf  36708  bj-19.12  36749  bj-pm11.53vw  36764  mpobi123f  38156  mptbi12f  38160  ismnushort  44290  setrec2mpt  49686
  Copyright terms: Public domain W3C validator