| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylg | Structured version Visualization version GIF version | ||
| Description: A syllogism combined with generalization. Inference associated with sylgt 1822. General form of alrimih 1824. (Contributed by NM, 9-Jan-1993.) Extract from proof of alrimih 1824. (Revised by BJ, 4-Oct-2019.) |
| Ref | Expression |
|---|---|
| sylg.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
| sylg.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylg | ⊢ (𝜑 → ∀𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylg.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
| 2 | sylg.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 2 | alimi 1811 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥𝜒) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∀𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: alrimih 1824 ax9ALT 2725 raleqbidvvOLD 3310 csbied 3901 rzal 4475 ssrel 5748 ssrelOLD 5749 kmlem1 10111 bnj1476 34844 bnj1533 34849 bj-alrimd 36615 bj-exlimd 36620 bj-ax12ig 36631 axc11n11 36677 bj-modalbe 36683 bj-modal4 36709 bj-wnfanf 36714 bj-wnfenf 36715 bj-19.12 36756 bj-pm11.53vw 36771 mpobi123f 38163 mptbi12f 38167 ismnushort 44297 setrec2mpt 49690 |
| Copyright terms: Public domain | W3C validator |