MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylg Structured version   Visualization version   GIF version

Theorem sylg 1821
Description: A syllogism combined with generalization. Inference associated with sylgt 1820. General form of alrimih 1822. (Contributed by NM, 9-Jan-1993.) Extract from proof of alrimih 1822. (Revised by BJ, 4-Oct-2019.)
Hypotheses
Ref Expression
sylg.1 (𝜑 → ∀𝑥𝜓)
sylg.2 (𝜓𝜒)
Assertion
Ref Expression
sylg (𝜑 → ∀𝑥𝜒)

Proof of Theorem sylg
StepHypRef Expression
1 sylg.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sylg.2 . . 3 (𝜓𝜒)
32alimi 1809 . 2 (∀𝑥𝜓 → ∀𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1793  ax-4 1807
This theorem is referenced by:  alrimih  1822  ax9ALT  2735  raleqbidvvOLD  3343  csbied  3959  rzal  4532  ssrel  5806  ssrelOLD  5807  kmlem1  10220  bnj1476  34823  bnj1533  34828  bj-alrimd  36586  bj-exlimd  36591  bj-ax12ig  36602  axc11n11  36648  bj-modalbe  36654  bj-modal4  36680  bj-wnfanf  36685  bj-wnfenf  36686  bj-19.12  36727  bj-pm11.53vw  36742  mpobi123f  38122  mptbi12f  38126  ismnushort  44270  setrec2mpt  48789
  Copyright terms: Public domain W3C validator