MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylg Structured version   Visualization version   GIF version

Theorem sylg 1817
Description: A syllogism combined with generalization. Inference associated with sylgt 1816. General form of alrimih 1818. (Contributed by BJ, 4-Oct-2019.)
Hypotheses
Ref Expression
sylg.1 (𝜑 → ∀𝑥𝜓)
sylg.2 (𝜓𝜒)
Assertion
Ref Expression
sylg (𝜑 → ∀𝑥𝜒)

Proof of Theorem sylg
StepHypRef Expression
1 sylg.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sylg.2 . . 3 (𝜓𝜒)
32alimi 1805 . 2 (∀𝑥𝜓 → ∀𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1789  ax-4 1803
This theorem is referenced by:  alrimih  1818  ax9ALT  2719  raleqbidvvOLD  3322  csbied  3924  rzal  4501  ssrel  5773  ssrelOLD  5774  kmlem1  10142  bnj1476  34376  bnj1533  34381  bj-alrimd  35997  bj-exlimd  36002  bj-ax12ig  36013  axc11n11  36060  bj-modalbe  36066  bj-modal4  36092  bj-wnfanf  36097  bj-wnfenf  36098  bj-19.12  36139  bj-pm11.53vw  36154  mpobi123f  37533  mptbi12f  37537  ismnushort  43609  setrec2mpt  47989
  Copyright terms: Public domain W3C validator