MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylg Structured version   Visualization version   GIF version

Theorem sylg 1818
Description: A syllogism combined with generalization. Inference associated with sylgt 1817. General form of alrimih 1819. (Contributed by BJ, 4-Oct-2019.)
Hypotheses
Ref Expression
sylg.1 (𝜑 → ∀𝑥𝜓)
sylg.2 (𝜓𝜒)
Assertion
Ref Expression
sylg (𝜑 → ∀𝑥𝜒)

Proof of Theorem sylg
StepHypRef Expression
1 sylg.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sylg.2 . . 3 (𝜓𝜒)
32alimi 1806 . 2 (∀𝑥𝜓 → ∀𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1790  ax-4 1804
This theorem is referenced by:  alrimih  1819  ax9ALT  2723  raleqbidvvOLD  3327  csbied  3930  rzal  4509  ssrel  5784  ssrelOLD  5785  kmlem1  10173  bnj1476  34478  bnj1533  34483  bj-alrimd  36096  bj-exlimd  36101  bj-ax12ig  36112  axc11n11  36159  bj-modalbe  36165  bj-modal4  36191  bj-wnfanf  36196  bj-wnfenf  36197  bj-19.12  36238  bj-pm11.53vw  36253  mpobi123f  37635  mptbi12f  37639  ismnushort  43738  setrec2mpt  48128
  Copyright terms: Public domain W3C validator