![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylg | Structured version Visualization version GIF version |
Description: A syllogism combined with generalization. Inference associated with sylgt 1816. General form of alrimih 1818. (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
sylg.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
sylg.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylg | ⊢ (𝜑 → ∀𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylg.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
2 | sylg.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 2 | alimi 1805 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥𝜒) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∀𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1789 ax-4 1803 |
This theorem is referenced by: alrimih 1818 ax9ALT 2719 raleqbidvvOLD 3322 csbied 3924 rzal 4501 ssrel 5773 ssrelOLD 5774 kmlem1 10142 bnj1476 34376 bnj1533 34381 bj-alrimd 35997 bj-exlimd 36002 bj-ax12ig 36013 axc11n11 36060 bj-modalbe 36066 bj-modal4 36092 bj-wnfanf 36097 bj-wnfenf 36098 bj-19.12 36139 bj-pm11.53vw 36154 mpobi123f 37533 mptbi12f 37537 ismnushort 43609 setrec2mpt 47989 |
Copyright terms: Public domain | W3C validator |