MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylg Structured version   Visualization version   GIF version

Theorem sylg 1824
Description: A syllogism combined with generalization. Inference associated with sylgt 1823. General form of alrimih 1825. (Contributed by NM, 9-Jan-1993.) Extract from proof of alrimih 1825. (Revised by BJ, 4-Oct-2019.)
Hypotheses
Ref Expression
sylg.1 (𝜑 → ∀𝑥𝜓)
sylg.2 (𝜓𝜒)
Assertion
Ref Expression
sylg (𝜑 → ∀𝑥𝜒)

Proof of Theorem sylg
StepHypRef Expression
1 sylg.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sylg.2 . . 3 (𝜓𝜒)
32alimi 1812 . 2 (∀𝑥𝜓 → ∀𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1796  ax-4 1810
This theorem is referenced by:  alrimih  1825  ax9ALT  2726  raleqbidvvOLD  3301  csbied  3881  rzal  4456  ssrel  5722  kmlem1  10042  bnj1476  34859  bnj1533  34864  bj-alrimd  36662  bj-exlimd  36667  bj-ax12ig  36678  axc11n11  36724  bj-modalbe  36730  bj-modal4  36756  bj-wnfanf  36761  bj-wnfenf  36762  bj-19.12  36803  bj-pm11.53vw  36818  mpobi123f  38210  mptbi12f  38214  ismnushort  44342  setrec2mpt  49737
  Copyright terms: Public domain W3C validator