MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylg Structured version   Visualization version   GIF version

Theorem sylg 1823
Description: A syllogism combined with generalization. Inference associated with sylgt 1822. General form of alrimih 1824. (Contributed by NM, 9-Jan-1993.) Extract from proof of alrimih 1824. (Revised by BJ, 4-Oct-2019.)
Hypotheses
Ref Expression
sylg.1 (𝜑 → ∀𝑥𝜓)
sylg.2 (𝜓𝜒)
Assertion
Ref Expression
sylg (𝜑 → ∀𝑥𝜒)

Proof of Theorem sylg
StepHypRef Expression
1 sylg.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sylg.2 . . 3 (𝜓𝜒)
32alimi 1811 . 2 (∀𝑥𝜓 → ∀𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1795  ax-4 1809
This theorem is referenced by:  alrimih  1824  ax9ALT  2724  raleqbidvvOLD  3298  csbied  3887  rzal  4460  ssrel  5726  kmlem1  10045  bnj1476  34814  bnj1533  34819  bj-alrimd  36594  bj-exlimd  36599  bj-ax12ig  36610  axc11n11  36656  bj-modalbe  36662  bj-modal4  36688  bj-wnfanf  36693  bj-wnfenf  36694  bj-19.12  36735  bj-pm11.53vw  36750  mpobi123f  38142  mptbi12f  38146  ismnushort  44274  setrec2mpt  49682
  Copyright terms: Public domain W3C validator