| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimd | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2207. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| alrimd.1 | ⊢ Ⅎ𝑥𝜑 |
| alrimd.2 | ⊢ Ⅎ𝑥𝜓 |
| alrimd.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alrimd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimd.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | alrimd.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 4 | alrimd.3 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 5 | 1, 3, 4 | alrimdd 2214 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: moexexlem 2625 ralrimd 3247 pssnn 9182 fiint 9338 fiintOLD 9339 wl-mo3t 37594 pm14.24 44456 |
| Copyright terms: Public domain | W3C validator |