MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimd Structured version   Visualization version   GIF version

Theorem alrimd 2213
Description: Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2205. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
alrimd.1 𝑥𝜑
alrimd.2 𝑥𝜓
alrimd.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
alrimd (𝜑 → (𝜓 → ∀𝑥𝜒))

Proof of Theorem alrimd
StepHypRef Expression
1 alrimd.1 . 2 𝑥𝜑
2 alrimd.2 . . 3 𝑥𝜓
32a1i 11 . 2 (𝜑 → Ⅎ𝑥𝜓)
4 alrimd.3 . 2 (𝜑 → (𝜓𝜒))
51, 3, 4alrimdd 2212 1 (𝜑 → (𝜓 → ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-ex 1777  df-nf 1781
This theorem is referenced by:  moexexlem  2624  ralrimd  3262  pssnn  9207  fiint  9364  fiintOLD  9365  wl-mo3t  37557  pm14.24  44428
  Copyright terms: Public domain W3C validator