| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axc4 | Structured version Visualization version GIF version | ||
| Description: Over minimal calculus, the modal axiom (4) (hba1 2292) and the modal axiom (K) (ax-4 1808) together imply axc4 2320. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axc4 | ⊢ ((∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) → ((∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥∀𝑥𝜑 → ∀𝑥𝜓)) → (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-imim21 36493 | 1 ⊢ ((∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) → ((∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥∀𝑥𝜑 → ∀𝑥𝜓)) → (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |