Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axc4 | Structured version Visualization version GIF version |
Description: Over minimal calculus, the modal axiom (4) (hba1 2293) and the modal axiom (K) (ax-4 1813) together imply axc4 2319. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-axc4 | ⊢ ((∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) → ((∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥∀𝑥𝜑 → ∀𝑥𝜓)) → (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imim21 34658 | 1 ⊢ ((∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) → ((∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥∀𝑥𝜑 → ∀𝑥𝜓)) → (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |