Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-gl4 | Structured version Visualization version GIF version |
Description: In a normal modal logic, the modal axiom GL implies the modal axiom (4). Translated to first-order logic, Axiom GL reads ⊢ (∀𝑥(∀𝑥𝜑 → 𝜑) → ∀𝑥𝜑). Note that the antecedent of bj-gl4 34777 is an instance of the axiom GL, with 𝜑 replaced by (∀𝑥𝜑 ∧ 𝜑), which is a modality sometimes called the "strong necessity" of 𝜑. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-gl4 | ⊢ ((∀𝑥(∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑)) → ∀𝑥(∀𝑥𝜑 ∧ 𝜑)) → (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1873 | . . . . 5 ⊢ (∀𝑥(∀𝑥𝜑 ∧ 𝜑) ↔ (∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑)) | |
2 | simpr 485 | . . . . . . 7 ⊢ ((∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑) → ∀𝑥𝜑) | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑) → ∀𝑥𝜑)) |
4 | 3 | anc2ri 557 | . . . . 5 ⊢ (𝜑 → ((∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑) → (∀𝑥𝜑 ∧ 𝜑))) |
5 | 1, 4 | syl5bi 241 | . . . 4 ⊢ (𝜑 → (∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑))) |
6 | 5 | alimi 1814 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑))) |
7 | 1 | biimpi 215 | . . 3 ⊢ (∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑)) |
8 | 6, 7 | imim12i 62 | . 2 ⊢ ((∀𝑥(∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑)) → ∀𝑥(∀𝑥𝜑 ∧ 𝜑)) → (∀𝑥𝜑 → (∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑))) |
9 | simpl 483 | . 2 ⊢ ((∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑) → ∀𝑥∀𝑥𝜑) | |
10 | 8, 9 | syl6 35 | 1 ⊢ ((∀𝑥(∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑)) → ∀𝑥(∀𝑥𝜑 ∧ 𝜑)) → (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |