| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc4 | Structured version Visualization version GIF version | ||
| Description: Show that the original
axiom ax-c4 38885 can be derived from ax-4 1809
(alim 1810), ax-10 2141 (hbn1 2142), sp 2183 and propositional calculus. See
ax4fromc4 38895 for the rederivation of ax-4 1809
from ax-c4 38885.
Part of the proof is based on the proof of Lemma 22 of [Monk2] p. 114. (Contributed by NM, 21-May-2008.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| axc4 | ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2183 | . . . 4 ⊢ (∀𝑥 ¬ ∀𝑥𝜑 → ¬ ∀𝑥𝜑) | |
| 2 | 1 | con2i 139 | . . 3 ⊢ (∀𝑥𝜑 → ¬ ∀𝑥 ¬ ∀𝑥𝜑) |
| 3 | hbn1 2142 | . . 3 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑) | |
| 4 | hbn1 2142 | . . . . 5 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
| 5 | 4 | con1i 147 | . . . 4 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) |
| 6 | 5 | alimi 1811 | . . 3 ⊢ (∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| 7 | 2, 3, 6 | 3syl 18 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| 8 | alim 1810 | . 2 ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥∀𝑥𝜑 → ∀𝑥𝜓)) | |
| 9 | 7, 8 | syl5 34 | 1 ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: axc5c4c711 44420 |
| Copyright terms: Public domain | W3C validator |