| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hba1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∀𝑥𝜑. This corresponds to the axiom (4) of modal logic. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Oct-2021.) |
| Ref | Expression |
|---|---|
| hba1 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2152 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: axi5r 2700 axial 2701 bj-19.41al 36682 bj-wnf1 36740 hbntal 44545 hbimpg 44546 hbimpgVD 44895 hbalgVD 44896 hbexgVD 44897 ax6e2eqVD 44898 e2ebindVD 44903 vk15.4jVD 44905 |
| Copyright terms: Public domain | W3C validator |