Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-syl66ib Structured version   Visualization version   GIF version

Theorem bj-syl66ib 34731
Description: A mixed syllogism inference derived from syl6ib 250. In addition to bj-dvelimdv1 35032, it can also shorten alexsubALTlem4 23199 (4821>4812), supsrlem 10868 (2868>2863). (Contributed by BJ, 20-Oct-2021.)
Hypotheses
Ref Expression
bj-syl66ib.1 (𝜑 → (𝜓𝜃))
bj-syl66ib.2 (𝜃𝜏)
bj-syl66ib.3 (𝜏𝜒)
Assertion
Ref Expression
bj-syl66ib (𝜑 → (𝜓𝜒))

Proof of Theorem bj-syl66ib
StepHypRef Expression
1 bj-syl66ib.1 . . 3 (𝜑 → (𝜓𝜃))
2 bj-syl66ib.2 . . 3 (𝜃𝜏)
31, 2syl6 35 . 2 (𝜑 → (𝜓𝜏))
4 bj-syl66ib.3 . 2 (𝜏𝜒)
53, 4syl6ib 250 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  bj-dvelimdv1  35032
  Copyright terms: Public domain W3C validator