Step | Hyp | Ref
| Expression |
1 | | ralnex 3163 |
. . . . 5
⊢
(∀𝑏 ∈
(𝒫 𝑎 ∩ Fin)
¬ 𝑋 = ∪ 𝑏
↔ ¬ ∃𝑏
∈ (𝒫 𝑎 ∩
Fin)𝑋 = ∪ 𝑏) |
2 | | alexsubALT.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
3 | 2 | alexsubALTlem2 23107 |
. . . . . . 7
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → ∃𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣) |
4 | | elun 4079 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ↔
(𝑢 ∈ {𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∨ 𝑢 ∈ {∅})) |
5 | | sseq2 3943 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑢 → (𝑎 ⊆ 𝑧 ↔ 𝑎 ⊆ 𝑢)) |
6 | | pweq 4546 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑢 → 𝒫 𝑧 = 𝒫 𝑢) |
7 | 6 | ineq1d 4142 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑢 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑢 ∩ Fin)) |
8 | 7 | raleqdv 3339 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑢 → (∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 ↔ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪
𝑏)) |
9 | 5, 8 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑢 → ((𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) ↔ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) |
10 | 9 | elrab 3617 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ↔ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) |
11 | | velsn 4574 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {∅} ↔ 𝑢 = ∅) |
12 | 10, 11 | orbi12i 911 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∨ 𝑢 ∈ {∅}) ↔ ((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) ∨ 𝑢 = ∅)) |
13 | 4, 12 | bitri 274 |
. . . . . . . . 9
⊢ (𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ↔
((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) ∨ 𝑢 = ∅)) |
14 | | ralnex 3163 |
. . . . . . . . . . . . 13
⊢
(∀𝑣 ∈
({𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 ↔ ¬ ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣) |
15 | | simprrl 777 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → 𝑎 ⊆ 𝑢) |
16 | 15 | unissd 4846 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → ∪ 𝑎
⊆ ∪ 𝑢) |
17 | | sseq1 3942 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 = ∪
𝑎 → (𝑋 ⊆ ∪ 𝑢 ↔ ∪ 𝑎
⊆ ∪ 𝑢)) |
18 | 16, 17 | syl5ibrcom 246 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑋 = ∪ 𝑎 → 𝑋 ⊆ ∪ 𝑢)) |
19 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑥 ∈ V |
20 | | inss1 4159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 ∩ 𝑢) ⊆ 𝑥 |
21 | 19, 20 | elpwi2 5265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∩ 𝑢) ∈ 𝒫 𝑥 |
22 | | unieq 4847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = (𝑥 ∩ 𝑢) → ∪ 𝑐 = ∪
(𝑥 ∩ 𝑢)) |
23 | 22 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = (𝑥 ∩ 𝑢) → (𝑋 = ∪ 𝑐 ↔ 𝑋 = ∪ (𝑥 ∩ 𝑢))) |
24 | | pweq 4546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = (𝑥 ∩ 𝑢) → 𝒫 𝑐 = 𝒫 (𝑥 ∩ 𝑢)) |
25 | 24 | ineq1d 4142 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = (𝑥 ∩ 𝑢) → (𝒫 𝑐 ∩ Fin) = (𝒫 (𝑥 ∩ 𝑢) ∩ Fin)) |
26 | 25 | rexeqdv 3340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = (𝑥 ∩ 𝑢) → (∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑 ↔ ∃𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin)𝑋 = ∪ 𝑑)) |
27 | 23, 26 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 = (𝑥 ∩ 𝑢) → ((𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ↔ (𝑋 = ∪ (𝑥 ∩ 𝑢) → ∃𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin)𝑋 = ∪ 𝑑))) |
28 | 27 | rspccv 3549 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → ((𝑥 ∩ 𝑢) ∈ 𝒫 𝑥 → (𝑋 = ∪ (𝑥 ∩ 𝑢) → ∃𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin)𝑋 = ∪ 𝑑))) |
29 | 21, 28 | mpi 20 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑋 = ∪ (𝑥 ∩ 𝑢) → ∃𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin)𝑋 = ∪ 𝑑)) |
30 | | inss2 4160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∩ 𝑢) ⊆ 𝑢 |
31 | | sstr 3925 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑑 ⊆ (𝑥 ∩ 𝑢) ∧ (𝑥 ∩ 𝑢) ⊆ 𝑢) → 𝑑 ⊆ 𝑢) |
32 | 30, 31 | mpan2 687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑑 ⊆ (𝑥 ∩ 𝑢) → 𝑑 ⊆ 𝑢) |
33 | 32 | anim1i 614 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑑 ⊆ (𝑥 ∩ 𝑢) ∧ 𝑑 ∈ Fin) → (𝑑 ⊆ 𝑢 ∧ 𝑑 ∈ Fin)) |
34 | | elfpw 9051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin) ↔ (𝑑 ⊆ (𝑥 ∩ 𝑢) ∧ 𝑑 ∈ Fin)) |
35 | | elfpw 9051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑑 ∈ (𝒫 𝑢 ∩ Fin) ↔ (𝑑 ⊆ 𝑢 ∧ 𝑑 ∈ Fin)) |
36 | 33, 34, 35 | 3imtr4i 291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin) → 𝑑 ∈ (𝒫 𝑢 ∩ Fin)) |
37 | 36 | anim1i 614 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin) ∧ 𝑋 = ∪ 𝑑) → (𝑑 ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ∪ 𝑑)) |
38 | 37 | reximi2 3171 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∃𝑑 ∈
(𝒫 (𝑥 ∩ 𝑢) ∩ Fin)𝑋 = ∪ 𝑑 → ∃𝑑 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑑) |
39 | 29, 38 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑋 = ∪ (𝑥 ∩ 𝑢) → ∃𝑑 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑑)) |
40 | | unieq 4847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑑 = 𝑏 → ∪ 𝑑 = ∪
𝑏) |
41 | 40 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑑 = 𝑏 → (𝑋 = ∪ 𝑑 ↔ 𝑋 = ∪ 𝑏)) |
42 | 41 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑑 ∈
(𝒫 𝑢 ∩
Fin)𝑋 = ∪ 𝑑
↔ ∃𝑏 ∈
(𝒫 𝑢 ∩
Fin)𝑋 = ∪ 𝑏) |
43 | 39, 42 | syl6ib 250 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑋 = ∪ (𝑥 ∩ 𝑢) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
44 | | dfrex2 3166 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑏 ∈
(𝒫 𝑢 ∩
Fin)𝑋 = ∪ 𝑏
↔ ¬ ∀𝑏
∈ (𝒫 𝑢 ∩
Fin) ¬ 𝑋 = ∪ 𝑏) |
45 | 43, 44 | syl6ib 250 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑋 = ∪ (𝑥 ∩ 𝑢) → ¬ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) |
46 | 45 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪
𝑏 → ¬ 𝑋 = ∪
(𝑥 ∩ 𝑢))) |
47 | 46 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑎 ⊆ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ (𝑥 ∩ 𝑢)))) |
48 | 47 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (𝑎 ⊆ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ (𝑥 ∩ 𝑢)))) |
49 | 48 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ 𝑢 ∈ 𝒫 (fi‘𝑥)) → (𝑎 ⊆ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ (𝑥 ∩ 𝑢)))) |
50 | 49 | impd 410 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ 𝑢 ∈ 𝒫 (fi‘𝑥)) → ((𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) → ¬ 𝑋 = ∪ (𝑥 ∩ 𝑢))) |
51 | 50 | impr 454 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → ¬ 𝑋 = ∪
(𝑥 ∩ 𝑢)) |
52 | 20 | unissi 4845 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ (𝑥
∩ 𝑢) ⊆ ∪ 𝑥 |
53 | | fiuni 9117 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ V → ∪ 𝑥 =
∪ (fi‘𝑥)) |
54 | 53 | elv 3428 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ 𝑥 =
∪ (fi‘𝑥) |
55 | | fibas 22035 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(fi‘𝑥) ∈
TopBases |
56 | | unitg 22025 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((fi‘𝑥) ∈
TopBases → ∪ (topGen‘(fi‘𝑥)) = ∪ (fi‘𝑥)) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ (topGen‘(fi‘𝑥)) = ∪
(fi‘𝑥) |
58 | 54, 57 | eqtr4i 2769 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪ 𝑥 =
∪ (topGen‘(fi‘𝑥)) |
59 | | unieq 4847 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) |
60 | 58, 59 | eqtr4id 2798 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ 𝑥 =
∪ 𝐽) |
61 | 60, 2 | eqtr4di 2797 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ 𝑥 =
𝑋) |
62 | 61 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → ∪ 𝑥 =
𝑋) |
63 | 62 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → ∪ 𝑥 =
𝑋) |
64 | 52, 63 | sseqtrid 3969 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → ∪ (𝑥
∩ 𝑢) ⊆ 𝑋) |
65 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 = ∪
(𝑥 ∩ 𝑢) ↔ ∪ (𝑥 ∩ 𝑢) = 𝑋) |
66 | | eqss 3932 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∪ (𝑥
∩ 𝑢) = 𝑋 ↔ (∪ (𝑥
∩ 𝑢) ⊆ 𝑋 ∧ 𝑋 ⊆ ∪ (𝑥 ∩ 𝑢))) |
67 | 66 | baib 535 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ (𝑥
∩ 𝑢) ⊆ 𝑋 → (∪ (𝑥
∩ 𝑢) = 𝑋 ↔ 𝑋 ⊆ ∪ (𝑥 ∩ 𝑢))) |
68 | 65, 67 | syl5bb 282 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ (𝑥
∩ 𝑢) ⊆ 𝑋 → (𝑋 = ∪ (𝑥 ∩ 𝑢) ↔ 𝑋 ⊆ ∪ (𝑥 ∩ 𝑢))) |
69 | 64, 68 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑋 = ∪ (𝑥 ∩ 𝑢) ↔ 𝑋 ⊆ ∪ (𝑥 ∩ 𝑢))) |
70 | 51, 69 | mtbid 323 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → ¬ 𝑋 ⊆ ∪ (𝑥
∩ 𝑢)) |
71 | | sstr2 3924 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ⊆ ∪ 𝑢
→ (∪ 𝑢 ⊆ ∪ (𝑥 ∩ 𝑢) → 𝑋 ⊆ ∪ (𝑥 ∩ 𝑢))) |
72 | 71 | con3rr3 155 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑋 ⊆ ∪ (𝑥
∩ 𝑢) → (𝑋 ⊆ ∪ 𝑢
→ ¬ ∪ 𝑢 ⊆ ∪ (𝑥 ∩ 𝑢))) |
73 | 70, 72 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑋 ⊆ ∪ 𝑢 → ¬ ∪ 𝑢
⊆ ∪ (𝑥 ∩ 𝑢))) |
74 | | nss 3979 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
∪ 𝑢 ⊆ ∪ (𝑥 ∩ 𝑢) ↔ ∃𝑦(𝑦 ∈ ∪ 𝑢 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) |
75 | | df-rex 3069 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑦 ∈
∪ 𝑢 ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) ↔ ∃𝑦(𝑦 ∈ ∪ 𝑢 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) |
76 | 74, 75 | bitr4i 277 |
. . . . . . . . . . . . . . . 16
⊢ (¬
∪ 𝑢 ⊆ ∪ (𝑥 ∩ 𝑢) ↔ ∃𝑦 ∈ ∪ 𝑢 ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)) |
77 | | eluni2 4840 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ∪ 𝑢
↔ ∃𝑤 ∈
𝑢 𝑦 ∈ 𝑤) |
78 | | elpwi 4539 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 ∈ 𝒫
(fi‘𝑥) → 𝑢 ⊆ (fi‘𝑥)) |
79 | 78 | sseld 3916 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 ∈ 𝒫
(fi‘𝑥) → (𝑤 ∈ 𝑢 → 𝑤 ∈ (fi‘𝑥))) |
80 | 79 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → 𝑤 ∈ (fi‘𝑥))) |
81 | | elfi 9102 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∈ V ∧ 𝑥 ∈ V) → (𝑤 ∈ (fi‘𝑥) ↔ ∃𝑡 ∈ (𝒫 𝑥 ∩ Fin)𝑤 = ∩ 𝑡)) |
82 | 81 | el2v 3430 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ (fi‘𝑥) ↔ ∃𝑡 ∈ (𝒫 𝑥 ∩ Fin)𝑤 = ∩ 𝑡) |
83 | 80, 82 | syl6ib 250 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → ∃𝑡 ∈ (𝒫 𝑥 ∩ Fin)𝑤 = ∩ 𝑡)) |
84 | 2 | alexsubALTlem3 23108 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |
85 | 78 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) → 𝑢 ⊆ (fi‘𝑥)) |
86 | 85 | ad4antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑢 ⊆ (fi‘𝑥)) |
87 | | ssfii 9108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑥 ∈ V → 𝑥 ⊆ (fi‘𝑥)) |
88 | 87 | elv 3428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 𝑥 ⊆ (fi‘𝑥) |
89 | | elinel1 4125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ∈ 𝒫 𝑥) |
90 | 89 | elpwid 4541 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ⊆ 𝑥) |
91 | 90 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → 𝑡 ⊆ 𝑥) |
92 | 91 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑡 ⊆ 𝑥) |
93 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑠 ∈ 𝑡) |
94 | 92, 93 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑠 ∈ 𝑥) |
95 | 88, 94 | sselid 3915 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑠 ∈ (fi‘𝑥)) |
96 | 95 | snssd 4739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → {𝑠} ⊆ (fi‘𝑥)) |
97 | 86, 96 | unssd 4116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → (𝑢 ∪ {𝑠}) ⊆ (fi‘𝑥)) |
98 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(fi‘𝑥) ∈
V |
99 | 98 | elpw2 5264 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑢 ∪ {𝑠}) ∈ 𝒫 (fi‘𝑥) ↔ (𝑢 ∪ {𝑠}) ⊆ (fi‘𝑥)) |
100 | 97, 99 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → (𝑢 ∪ {𝑠}) ∈ 𝒫 (fi‘𝑥)) |
101 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) → 𝑎 ⊆ 𝑢) |
102 | 101 | ad4antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑎 ⊆ 𝑢) |
103 | | ssun1 4102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 𝑢 ⊆ (𝑢 ∪ {𝑠}) |
104 | 102, 103 | sstrdi 3929 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑎 ⊆ (𝑢 ∪ {𝑠})) |
105 | | unieq 4847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑛 = 𝑏 → ∪ 𝑛 = ∪
𝑏) |
106 | 105 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑏 → (𝑋 = ∪ 𝑛 ↔ 𝑋 = ∪ 𝑏)) |
107 | 106 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 = 𝑏 → (¬ 𝑋 = ∪ 𝑛 ↔ ¬ 𝑋 = ∪ 𝑏)) |
108 | 107 | cbvralvw 3372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∀𝑛 ∈
(𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪
𝑛 ↔ ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏) |
109 | 108 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(∀𝑛 ∈
(𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪
𝑛 → ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏) |
110 | 109 | ad2antll 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏) |
111 | 100, 104,
110 | jca32 515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ((𝑢 ∪ {𝑠}) ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ (𝑢 ∪ {𝑠}) ∧ ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) |
112 | | sseq2 3943 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑢 ∪ {𝑠}) → (𝑎 ⊆ 𝑧 ↔ 𝑎 ⊆ (𝑢 ∪ {𝑠}))) |
113 | | pweq 4546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = (𝑢 ∪ {𝑠}) → 𝒫 𝑧 = 𝒫 (𝑢 ∪ {𝑠})) |
114 | 113 | ineq1d 4142 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑢 ∪ {𝑠}) → (𝒫 𝑧 ∩ Fin) = (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)) |
115 | 114 | raleqdv 3339 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑢 ∪ {𝑠}) → (∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 ↔ ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) |
116 | 112, 115 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑢 ∪ {𝑠}) → ((𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) ↔ (𝑎 ⊆ (𝑢 ∪ {𝑠}) ∧ ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) |
117 | 116 | elrab 3617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑢 ∪ {𝑠}) ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ↔ ((𝑢 ∪ {𝑠}) ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ (𝑢 ∪ {𝑠}) ∧ ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) |
118 | 111, 117 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → (𝑢 ∪ {𝑠}) ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)}) |
119 | | elun1 4106 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑢 ∪ {𝑠}) ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} → (𝑢 ∪ {𝑠}) ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪
{∅})) |
120 | 118, 119 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → (𝑢 ∪ {𝑠}) ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪
{∅})) |
121 | | vsnid 4595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑠 ∈ {𝑠} |
122 | | elun2 4107 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑠 ∈ {𝑠} → 𝑠 ∈ (𝑢 ∪ {𝑠})) |
123 | 121, 122 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 𝑠 ∈ (𝑢 ∪ {𝑠}) |
124 | | intss1 4891 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑠 ∈ 𝑡 → ∩ 𝑡 ⊆ 𝑠) |
125 | | sseq1 3942 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑤 = ∩
𝑡 → (𝑤 ⊆ 𝑠 ↔ ∩ 𝑡 ⊆ 𝑠)) |
126 | 124, 125 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑠 ∈ 𝑡 → (𝑤 = ∩ 𝑡 → 𝑤 ⊆ 𝑠)) |
127 | 126 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑤 = ∩
𝑡 ∧ 𝑠 ∈ 𝑡) → 𝑤 ⊆ 𝑠) |
128 | 127 | ad4ant24 750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ 𝑦 ∈ 𝑤) ∧ 𝑠 ∈ 𝑡) → 𝑤 ⊆ 𝑠) |
129 | 128 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑤 ∈ 𝑢 ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ 𝑠 ∈ 𝑡)) → 𝑤 ⊆ 𝑠) |
130 | 129 | adantrrr 721 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑤 ∈ 𝑢 ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑤 ⊆ 𝑠) |
131 | 130 | adantll 710 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑤 ⊆ 𝑠) |
132 | | simprlr 776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑦 ∈ 𝑤) |
133 | 131, 132 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑦 ∈ 𝑠) |
134 | 90 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ 𝑦 ∈ 𝑤) → 𝑡 ⊆ 𝑥) |
135 | 134 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑡 ⊆ 𝑥) |
136 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑠 ∈ 𝑡) |
137 | 135, 136 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑠 ∈ 𝑥) |
138 | | elin 3899 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑠 ∈ (𝑥 ∩ 𝑢) ↔ (𝑠 ∈ 𝑥 ∧ 𝑠 ∈ 𝑢)) |
139 | | elunii 4841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑦 ∈ 𝑠 ∧ 𝑠 ∈ (𝑥 ∩ 𝑢)) → 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)) |
140 | 139 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ 𝑠 → (𝑠 ∈ (𝑥 ∩ 𝑢) → 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) |
141 | 138, 140 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 ∈ 𝑠 → ((𝑠 ∈ 𝑥 ∧ 𝑠 ∈ 𝑢) → 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) |
142 | 141 | expd 415 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 ∈ 𝑠 → (𝑠 ∈ 𝑥 → (𝑠 ∈ 𝑢 → 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) |
143 | 133, 137,
142 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → (𝑠 ∈ 𝑢 → 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) |
144 | 143 | con3d 152 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → (¬ 𝑦 ∈ ∪ (𝑥
∩ 𝑢) → ¬ 𝑠 ∈ 𝑢)) |
145 | 144 | expr 456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤)) → ((𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) → (¬ 𝑦 ∈ ∪ (𝑥
∩ 𝑢) → ¬ 𝑠 ∈ 𝑢))) |
146 | 145 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤)) → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ((𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) → ¬ 𝑠 ∈ 𝑢))) |
147 | 146 | exp32 420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) → ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ((𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) → ¬ 𝑠 ∈ 𝑢))))) |
148 | 147 | imp55 442 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ¬ 𝑠 ∈ 𝑢) |
149 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑠 ∈ V |
150 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑣 = 𝑠 → (𝑣 ∈ (𝑢 ∪ {𝑠}) ↔ 𝑠 ∈ (𝑢 ∪ {𝑠}))) |
151 | | elequ1 2115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑣 = 𝑠 → (𝑣 ∈ 𝑢 ↔ 𝑠 ∈ 𝑢)) |
152 | 151 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑣 = 𝑠 → (¬ 𝑣 ∈ 𝑢 ↔ ¬ 𝑠 ∈ 𝑢)) |
153 | 150, 152 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑣 = 𝑠 → ((𝑣 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑣 ∈ 𝑢) ↔ (𝑠 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑠 ∈ 𝑢))) |
154 | 149, 153 | spcev 3535 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑠 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑠 ∈ 𝑢) → ∃𝑣(𝑣 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑣 ∈ 𝑢)) |
155 | 123, 148,
154 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ∃𝑣(𝑣 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑣 ∈ 𝑢)) |
156 | | nss 3979 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬
(𝑢 ∪ {𝑠}) ⊆ 𝑢 ↔ ∃𝑣(𝑣 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑣 ∈ 𝑢)) |
157 | 155, 156 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ¬ (𝑢 ∪ {𝑠}) ⊆ 𝑢) |
158 | | eqimss2 3974 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑢 = (𝑢 ∪ {𝑠}) → (𝑢 ∪ {𝑠}) ⊆ 𝑢) |
159 | 158 | necon3bi 2969 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (¬
(𝑢 ∪ {𝑠}) ⊆ 𝑢 → 𝑢 ≠ (𝑢 ∪ {𝑠})) |
160 | 157, 159 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑢 ≠ (𝑢 ∪ {𝑠})) |
161 | 160, 103 | jctil 519 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → (𝑢 ⊆ (𝑢 ∪ {𝑠}) ∧ 𝑢 ≠ (𝑢 ∪ {𝑠}))) |
162 | | df-pss 3902 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑢 ⊊ (𝑢 ∪ {𝑠}) ↔ (𝑢 ⊆ (𝑢 ∪ {𝑠}) ∧ 𝑢 ≠ (𝑢 ∪ {𝑠}))) |
163 | 161, 162 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑢 ⊊ (𝑢 ∪ {𝑠})) |
164 | | psseq2 4019 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑣 = (𝑢 ∪ {𝑠}) → (𝑢 ⊊ 𝑣 ↔ 𝑢 ⊊ (𝑢 ∪ {𝑠}))) |
165 | 164 | rspcev 3552 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑢 ∪ {𝑠}) ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ∧ 𝑢 ⊊ (𝑢 ∪ {𝑠})) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣) |
166 | 120, 163,
165 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣) |
167 | 84, 166 | rexlimddv 3219 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣) |
168 | 167 | exp45 438 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) → ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)))) |
169 | 168 | expd 415 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) → (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → (𝑤 = ∩ 𝑡 → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣))))) |
170 | 169 | rexlimdv 3211 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) → (∃𝑡 ∈ (𝒫 𝑥 ∩ Fin)𝑤 = ∩ 𝑡 → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)))) |
171 | 170 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → (∃𝑡 ∈ (𝒫 𝑥 ∩ Fin)𝑤 = ∩ 𝑡 → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣))))) |
172 | 83, 171 | mpdd 43 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)))) |
173 | 172 | rexlimdv 3211 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (∃𝑤 ∈ 𝑢 𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣))) |
174 | 77, 173 | syl5bi 241 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑦 ∈ ∪ 𝑢 → (¬ 𝑦 ∈ ∪ (𝑥
∩ 𝑢) →
∃𝑣 ∈ ({𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣))) |
175 | 174 | rexlimdv 3211 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (∃𝑦 ∈ ∪ 𝑢
¬ 𝑦 ∈ ∪ (𝑥
∩ 𝑢) →
∃𝑣 ∈ ({𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)) |
176 | 76, 175 | syl5bi 241 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (¬ ∪ 𝑢
⊆ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)) |
177 | 18, 73, 176 | 3syld 60 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑋 = ∪ 𝑎 → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)) |
178 | 177 | con3d 152 |
. . . . . . . . . . . . 13
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (¬ ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎)) |
179 | 14, 178 | syl5bi 241 |
. . . . . . . . . . . 12
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎)) |
180 | 179 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → ((𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎))) |
181 | 180 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → ((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎))) |
182 | | ssun1 4102 |
. . . . . . . . . . . . . 14
⊢ {𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪
{∅}) |
183 | | eqimss2 3974 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑎 → 𝑎 ⊆ 𝑧) |
184 | 183 | biantrurd 532 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑎 → (∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 ↔ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) |
185 | | pweq 4546 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑎 → 𝒫 𝑧 = 𝒫 𝑎) |
186 | 185 | ineq1d 4142 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑎 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑎 ∩ Fin)) |
187 | 186 | raleqdv 3339 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑎 → (∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 ↔ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏)) |
188 | 184, 187 | bitr3d 280 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑎 → ((𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) ↔ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏)) |
189 | | simpll3 1212 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → 𝑎 ∈ 𝒫 (fi‘𝑥)) |
190 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) |
191 | 188, 189,
190 | elrabd 3619 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → 𝑎 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)}) |
192 | 182, 191 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → 𝑎 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪
{∅})) |
193 | | psseq2 4019 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑎 → (𝑢 ⊊ 𝑣 ↔ 𝑢 ⊊ 𝑎)) |
194 | 193 | notbid 317 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑎 → (¬ 𝑢 ⊊ 𝑣 ↔ ¬ 𝑢 ⊊ 𝑎)) |
195 | 194 | rspcv 3547 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) →
(∀𝑣 ∈ ({𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑢 ⊊ 𝑎)) |
196 | 192, 195 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑢 ⊊ 𝑎)) |
197 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = ∅ → 𝑎 = ∅) |
198 | | 0elpw 5273 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ 𝒫 𝑎 |
199 | | 0fin 8916 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ Fin |
200 | 198, 199 | elini 4123 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
∈ (𝒫 𝑎 ∩
Fin) |
201 | 197, 200 | eqeltrdi 2847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = ∅ → 𝑎 ∈ (𝒫 𝑎 ∩ Fin)) |
202 | | unieq 4847 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑎 → ∪ 𝑏 = ∪
𝑎) |
203 | 202 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑎 → (𝑋 = ∪ 𝑏 ↔ 𝑋 = ∪ 𝑎)) |
204 | 203 | notbid 317 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑎 → (¬ 𝑋 = ∪ 𝑏 ↔ ¬ 𝑋 = ∪ 𝑎)) |
205 | 204 | rspccv 3549 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑏 ∈
(𝒫 𝑎 ∩ Fin)
¬ 𝑋 = ∪ 𝑏
→ (𝑎 ∈ (𝒫
𝑎 ∩ Fin) → ¬
𝑋 = ∪ 𝑎)) |
206 | 201, 205 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑏 ∈
(𝒫 𝑎 ∩ Fin)
¬ 𝑋 = ∪ 𝑏
→ (𝑎 = ∅ →
¬ 𝑋 = ∪ 𝑎)) |
207 | 206 | necon2ad 2957 |
. . . . . . . . . . . . . 14
⊢
(∀𝑏 ∈
(𝒫 𝑎 ∩ Fin)
¬ 𝑋 = ∪ 𝑏
→ (𝑋 = ∪ 𝑎
→ 𝑎 ≠
∅)) |
208 | 207 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (𝑋 = ∪ 𝑎 → 𝑎 ≠ ∅)) |
209 | | psseq1 4018 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = ∅ → (𝑢 ⊊ 𝑎 ↔ ∅ ⊊ 𝑎)) |
210 | 209 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (𝑢 ⊊ 𝑎 ↔ ∅ ⊊ 𝑎)) |
211 | | 0pss 4375 |
. . . . . . . . . . . . . 14
⊢ (∅
⊊ 𝑎 ↔ 𝑎 ≠ ∅) |
212 | 210, 211 | bitrdi 286 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (𝑢 ⊊ 𝑎 ↔ 𝑎 ≠ ∅)) |
213 | 208, 212 | sylibrd 258 |
. . . . . . . . . . . 12
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (𝑋 = ∪ 𝑎 → 𝑢 ⊊ 𝑎)) |
214 | 196, 213 | nsyld 156 |
. . . . . . . . . . 11
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎)) |
215 | 214 | ex 412 |
. . . . . . . . . 10
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → (𝑢 = ∅ → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎))) |
216 | 181, 215 | jaod 855 |
. . . . . . . . 9
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → (((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) ∨ 𝑢 = ∅) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎))) |
217 | 13, 216 | syl5bi 241 |
. . . . . . . 8
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → (𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) →
(∀𝑣 ∈ ({𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎))) |
218 | 217 | rexlimdv 3211 |
. . . . . . 7
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → (∃𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎)) |
219 | 3, 218 | mpd 15 |
. . . . . 6
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → ¬ 𝑋 = ∪
𝑎) |
220 | 219 | ex 412 |
. . . . 5
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏 → ¬ 𝑋 = ∪
𝑎)) |
221 | 1, 220 | syl5bir 242 |
. . . 4
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (¬ ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ 𝑎)) |
222 | 221 | con4d 115 |
. . 3
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) |
223 | 222 | 3exp 1117 |
. 2
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑎 ∈ 𝒫 (fi‘𝑥) → (𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)))) |
224 | 223 | ralrimdv 3111 |
1
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → ∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |