| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ralnex 3071 | . . . . 5
⊢
(∀𝑏 ∈
(𝒫 𝑎 ∩ Fin)
¬ 𝑋 = ∪ 𝑏
↔ ¬ ∃𝑏
∈ (𝒫 𝑎 ∩
Fin)𝑋 = ∪ 𝑏) | 
| 2 |  | alexsubALT.1 | . . . . . . . 8
⊢ 𝑋 = ∪
𝐽 | 
| 3 | 2 | alexsubALTlem2 24057 | . . . . . . 7
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → ∃𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣) | 
| 4 |  | elun 4152 | . . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ↔
(𝑢 ∈ {𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∨ 𝑢 ∈ {∅})) | 
| 5 |  | sseq2 4009 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑢 → (𝑎 ⊆ 𝑧 ↔ 𝑎 ⊆ 𝑢)) | 
| 6 |  | pweq 4613 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑢 → 𝒫 𝑧 = 𝒫 𝑢) | 
| 7 | 6 | ineq1d 4218 | . . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑢 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑢 ∩ Fin)) | 
| 8 | 7 | raleqdv 3325 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑢 → (∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 ↔ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪
𝑏)) | 
| 9 | 5, 8 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑢 → ((𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) ↔ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) | 
| 10 | 9 | elrab 3691 | . . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ↔ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) | 
| 11 |  | velsn 4641 | . . . . . . . . . . 11
⊢ (𝑢 ∈ {∅} ↔ 𝑢 = ∅) | 
| 12 | 10, 11 | orbi12i 914 | . . . . . . . . . 10
⊢ ((𝑢 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∨ 𝑢 ∈ {∅}) ↔ ((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) ∨ 𝑢 = ∅)) | 
| 13 | 4, 12 | bitri 275 | . . . . . . . . 9
⊢ (𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ↔
((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) ∨ 𝑢 = ∅)) | 
| 14 |  | ralnex 3071 | . . . . . . . . . . . . 13
⊢
(∀𝑣 ∈
({𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 ↔ ¬ ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣) | 
| 15 |  | simprrl 780 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → 𝑎 ⊆ 𝑢) | 
| 16 | 15 | unissd 4916 | . . . . . . . . . . . . . . . 16
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → ∪ 𝑎
⊆ ∪ 𝑢) | 
| 17 |  | sseq1 4008 | . . . . . . . . . . . . . . . 16
⊢ (𝑋 = ∪
𝑎 → (𝑋 ⊆ ∪ 𝑢 ↔ ∪ 𝑎
⊆ ∪ 𝑢)) | 
| 18 | 16, 17 | syl5ibrcom 247 | . . . . . . . . . . . . . . 15
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑋 = ∪ 𝑎 → 𝑋 ⊆ ∪ 𝑢)) | 
| 19 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑥 ∈ V | 
| 20 |  | inss1 4236 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 ∩ 𝑢) ⊆ 𝑥 | 
| 21 | 19, 20 | elpwi2 5334 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∩ 𝑢) ∈ 𝒫 𝑥 | 
| 22 |  | unieq 4917 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = (𝑥 ∩ 𝑢) → ∪ 𝑐 = ∪
(𝑥 ∩ 𝑢)) | 
| 23 | 22 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = (𝑥 ∩ 𝑢) → (𝑋 = ∪ 𝑐 ↔ 𝑋 = ∪ (𝑥 ∩ 𝑢))) | 
| 24 |  | pweq 4613 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = (𝑥 ∩ 𝑢) → 𝒫 𝑐 = 𝒫 (𝑥 ∩ 𝑢)) | 
| 25 | 24 | ineq1d 4218 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = (𝑥 ∩ 𝑢) → (𝒫 𝑐 ∩ Fin) = (𝒫 (𝑥 ∩ 𝑢) ∩ Fin)) | 
| 26 | 25 | rexeqdv 3326 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = (𝑥 ∩ 𝑢) → (∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑 ↔ ∃𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin)𝑋 = ∪ 𝑑)) | 
| 27 | 23, 26 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 = (𝑥 ∩ 𝑢) → ((𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ↔ (𝑋 = ∪ (𝑥 ∩ 𝑢) → ∃𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin)𝑋 = ∪ 𝑑))) | 
| 28 | 27 | rspccv 3618 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → ((𝑥 ∩ 𝑢) ∈ 𝒫 𝑥 → (𝑋 = ∪ (𝑥 ∩ 𝑢) → ∃𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin)𝑋 = ∪ 𝑑))) | 
| 29 | 21, 28 | mpi 20 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑋 = ∪ (𝑥 ∩ 𝑢) → ∃𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin)𝑋 = ∪ 𝑑)) | 
| 30 |  | inss2 4237 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∩ 𝑢) ⊆ 𝑢 | 
| 31 |  | sstr 3991 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑑 ⊆ (𝑥 ∩ 𝑢) ∧ (𝑥 ∩ 𝑢) ⊆ 𝑢) → 𝑑 ⊆ 𝑢) | 
| 32 | 30, 31 | mpan2 691 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑑 ⊆ (𝑥 ∩ 𝑢) → 𝑑 ⊆ 𝑢) | 
| 33 | 32 | anim1i 615 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑑 ⊆ (𝑥 ∩ 𝑢) ∧ 𝑑 ∈ Fin) → (𝑑 ⊆ 𝑢 ∧ 𝑑 ∈ Fin)) | 
| 34 |  | elfpw 9395 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin) ↔ (𝑑 ⊆ (𝑥 ∩ 𝑢) ∧ 𝑑 ∈ Fin)) | 
| 35 |  | elfpw 9395 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑑 ∈ (𝒫 𝑢 ∩ Fin) ↔ (𝑑 ⊆ 𝑢 ∧ 𝑑 ∈ Fin)) | 
| 36 | 33, 34, 35 | 3imtr4i 292 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin) → 𝑑 ∈ (𝒫 𝑢 ∩ Fin)) | 
| 37 | 36 | anim1i 615 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑑 ∈ (𝒫 (𝑥 ∩ 𝑢) ∩ Fin) ∧ 𝑋 = ∪ 𝑑) → (𝑑 ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ∪ 𝑑)) | 
| 38 | 37 | reximi2 3078 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∃𝑑 ∈
(𝒫 (𝑥 ∩ 𝑢) ∩ Fin)𝑋 = ∪ 𝑑 → ∃𝑑 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑑) | 
| 39 | 29, 38 | syl6 35 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑋 = ∪ (𝑥 ∩ 𝑢) → ∃𝑑 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑑)) | 
| 40 |  | unieq 4917 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑑 = 𝑏 → ∪ 𝑑 = ∪
𝑏) | 
| 41 | 40 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑑 = 𝑏 → (𝑋 = ∪ 𝑑 ↔ 𝑋 = ∪ 𝑏)) | 
| 42 | 41 | cbvrexvw 3237 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑑 ∈
(𝒫 𝑢 ∩
Fin)𝑋 = ∪ 𝑑
↔ ∃𝑏 ∈
(𝒫 𝑢 ∩
Fin)𝑋 = ∪ 𝑏) | 
| 43 | 39, 42 | imbitrdi 251 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑋 = ∪ (𝑥 ∩ 𝑢) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) | 
| 44 |  | dfrex2 3072 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑏 ∈
(𝒫 𝑢 ∩
Fin)𝑋 = ∪ 𝑏
↔ ¬ ∀𝑏
∈ (𝒫 𝑢 ∩
Fin) ¬ 𝑋 = ∪ 𝑏) | 
| 45 | 43, 44 | imbitrdi 251 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑋 = ∪ (𝑥 ∩ 𝑢) → ¬ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) | 
| 46 | 45 | con2d 134 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪
𝑏 → ¬ 𝑋 = ∪
(𝑥 ∩ 𝑢))) | 
| 47 | 46 | a1d 25 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑎 ⊆ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ (𝑥 ∩ 𝑢)))) | 
| 48 | 47 | 3ad2ant2 1134 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (𝑎 ⊆ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ (𝑥 ∩ 𝑢)))) | 
| 49 | 48 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ 𝑢 ∈ 𝒫 (fi‘𝑥)) → (𝑎 ⊆ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ (𝑥 ∩ 𝑢)))) | 
| 50 | 49 | impd 410 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ 𝑢 ∈ 𝒫 (fi‘𝑥)) → ((𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) → ¬ 𝑋 = ∪ (𝑥 ∩ 𝑢))) | 
| 51 | 50 | impr 454 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → ¬ 𝑋 = ∪
(𝑥 ∩ 𝑢)) | 
| 52 | 20 | unissi 4915 | . . . . . . . . . . . . . . . . . . 19
⊢ ∪ (𝑥
∩ 𝑢) ⊆ ∪ 𝑥 | 
| 53 |  | fiuni 9469 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ V → ∪ 𝑥 =
∪ (fi‘𝑥)) | 
| 54 | 53 | elv 3484 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ 𝑥 =
∪ (fi‘𝑥) | 
| 55 |  | fibas 22985 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(fi‘𝑥) ∈
TopBases | 
| 56 |  | unitg 22975 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((fi‘𝑥) ∈
TopBases → ∪ (topGen‘(fi‘𝑥)) = ∪ (fi‘𝑥)) | 
| 57 | 55, 56 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ (topGen‘(fi‘𝑥)) = ∪
(fi‘𝑥) | 
| 58 | 54, 57 | eqtr4i 2767 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪ 𝑥 =
∪ (topGen‘(fi‘𝑥)) | 
| 59 |  | unieq 4917 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) | 
| 60 | 58, 59 | eqtr4id 2795 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ 𝑥 =
∪ 𝐽) | 
| 61 | 60, 2 | eqtr4di 2794 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ 𝑥 =
𝑋) | 
| 62 | 61 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → ∪ 𝑥 =
𝑋) | 
| 63 | 62 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → ∪ 𝑥 =
𝑋) | 
| 64 | 52, 63 | sseqtrid 4025 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → ∪ (𝑥
∩ 𝑢) ⊆ 𝑋) | 
| 65 |  | eqcom 2743 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 = ∪
(𝑥 ∩ 𝑢) ↔ ∪ (𝑥 ∩ 𝑢) = 𝑋) | 
| 66 |  | eqss 3998 | . . . . . . . . . . . . . . . . . . . 20
⊢ (∪ (𝑥
∩ 𝑢) = 𝑋 ↔ (∪ (𝑥
∩ 𝑢) ⊆ 𝑋 ∧ 𝑋 ⊆ ∪ (𝑥 ∩ 𝑢))) | 
| 67 | 66 | baib 535 | . . . . . . . . . . . . . . . . . . 19
⊢ (∪ (𝑥
∩ 𝑢) ⊆ 𝑋 → (∪ (𝑥
∩ 𝑢) = 𝑋 ↔ 𝑋 ⊆ ∪ (𝑥 ∩ 𝑢))) | 
| 68 | 65, 67 | bitrid 283 | . . . . . . . . . . . . . . . . . 18
⊢ (∪ (𝑥
∩ 𝑢) ⊆ 𝑋 → (𝑋 = ∪ (𝑥 ∩ 𝑢) ↔ 𝑋 ⊆ ∪ (𝑥 ∩ 𝑢))) | 
| 69 | 64, 68 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑋 = ∪ (𝑥 ∩ 𝑢) ↔ 𝑋 ⊆ ∪ (𝑥 ∩ 𝑢))) | 
| 70 | 51, 69 | mtbid 324 | . . . . . . . . . . . . . . . 16
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → ¬ 𝑋 ⊆ ∪ (𝑥
∩ 𝑢)) | 
| 71 |  | sstr2 3989 | . . . . . . . . . . . . . . . . 17
⊢ (𝑋 ⊆ ∪ 𝑢
→ (∪ 𝑢 ⊆ ∪ (𝑥 ∩ 𝑢) → 𝑋 ⊆ ∪ (𝑥 ∩ 𝑢))) | 
| 72 | 71 | con3rr3 155 | . . . . . . . . . . . . . . . 16
⊢ (¬
𝑋 ⊆ ∪ (𝑥
∩ 𝑢) → (𝑋 ⊆ ∪ 𝑢
→ ¬ ∪ 𝑢 ⊆ ∪ (𝑥 ∩ 𝑢))) | 
| 73 | 70, 72 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑋 ⊆ ∪ 𝑢 → ¬ ∪ 𝑢
⊆ ∪ (𝑥 ∩ 𝑢))) | 
| 74 |  | nss 4047 | . . . . . . . . . . . . . . . . 17
⊢ (¬
∪ 𝑢 ⊆ ∪ (𝑥 ∩ 𝑢) ↔ ∃𝑦(𝑦 ∈ ∪ 𝑢 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) | 
| 75 |  | df-rex 3070 | . . . . . . . . . . . . . . . . 17
⊢
(∃𝑦 ∈
∪ 𝑢 ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) ↔ ∃𝑦(𝑦 ∈ ∪ 𝑢 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) | 
| 76 | 74, 75 | bitr4i 278 | . . . . . . . . . . . . . . . 16
⊢ (¬
∪ 𝑢 ⊆ ∪ (𝑥 ∩ 𝑢) ↔ ∃𝑦 ∈ ∪ 𝑢 ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)) | 
| 77 |  | eluni2 4910 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ∪ 𝑢
↔ ∃𝑤 ∈
𝑢 𝑦 ∈ 𝑤) | 
| 78 |  | elpwi 4606 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 ∈ 𝒫
(fi‘𝑥) → 𝑢 ⊆ (fi‘𝑥)) | 
| 79 | 78 | sseld 3981 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 ∈ 𝒫
(fi‘𝑥) → (𝑤 ∈ 𝑢 → 𝑤 ∈ (fi‘𝑥))) | 
| 80 | 79 | ad2antrl 728 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → 𝑤 ∈ (fi‘𝑥))) | 
| 81 |  | elfi 9454 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∈ V ∧ 𝑥 ∈ V) → (𝑤 ∈ (fi‘𝑥) ↔ ∃𝑡 ∈ (𝒫 𝑥 ∩ Fin)𝑤 = ∩ 𝑡)) | 
| 82 | 81 | el2v 3486 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ (fi‘𝑥) ↔ ∃𝑡 ∈ (𝒫 𝑥 ∩ Fin)𝑤 = ∩ 𝑡) | 
| 83 | 80, 82 | imbitrdi 251 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → ∃𝑡 ∈ (𝒫 𝑥 ∩ Fin)𝑤 = ∩ 𝑡)) | 
| 84 | 2 | alexsubALTlem3 24058 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) | 
| 85 | 78 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) → 𝑢 ⊆ (fi‘𝑥)) | 
| 86 | 85 | ad4antlr 733 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑢 ⊆ (fi‘𝑥)) | 
| 87 |  | ssfii 9460 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑥 ∈ V → 𝑥 ⊆ (fi‘𝑥)) | 
| 88 | 87 | elv 3484 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 𝑥 ⊆ (fi‘𝑥) | 
| 89 |  | elinel1 4200 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ∈ 𝒫 𝑥) | 
| 90 | 89 | elpwid 4608 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ⊆ 𝑥) | 
| 91 | 90 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → 𝑡 ⊆ 𝑥) | 
| 92 | 91 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑡 ⊆ 𝑥) | 
| 93 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑠 ∈ 𝑡) | 
| 94 | 92, 93 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑠 ∈ 𝑥) | 
| 95 | 88, 94 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑠 ∈ (fi‘𝑥)) | 
| 96 | 95 | snssd 4808 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → {𝑠} ⊆ (fi‘𝑥)) | 
| 97 | 86, 96 | unssd 4191 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → (𝑢 ∪ {𝑠}) ⊆ (fi‘𝑥)) | 
| 98 |  | fvex 6918 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(fi‘𝑥) ∈
V | 
| 99 | 98 | elpw2 5333 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑢 ∪ {𝑠}) ∈ 𝒫 (fi‘𝑥) ↔ (𝑢 ∪ {𝑠}) ⊆ (fi‘𝑥)) | 
| 100 | 97, 99 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → (𝑢 ∪ {𝑠}) ∈ 𝒫 (fi‘𝑥)) | 
| 101 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) → 𝑎 ⊆ 𝑢) | 
| 102 | 101 | ad4antlr 733 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑎 ⊆ 𝑢) | 
| 103 |  | ssun1 4177 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 𝑢 ⊆ (𝑢 ∪ {𝑠}) | 
| 104 | 102, 103 | sstrdi 3995 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑎 ⊆ (𝑢 ∪ {𝑠})) | 
| 105 |  | unieq 4917 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑛 = 𝑏 → ∪ 𝑛 = ∪
𝑏) | 
| 106 | 105 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑏 → (𝑋 = ∪ 𝑛 ↔ 𝑋 = ∪ 𝑏)) | 
| 107 | 106 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 = 𝑏 → (¬ 𝑋 = ∪ 𝑛 ↔ ¬ 𝑋 = ∪ 𝑏)) | 
| 108 | 107 | cbvralvw 3236 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∀𝑛 ∈
(𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪
𝑛 ↔ ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏) | 
| 109 | 108 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(∀𝑛 ∈
(𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪
𝑛 → ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏) | 
| 110 | 109 | ad2antll 729 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏) | 
| 111 | 100, 104,
110 | jca32 515 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ((𝑢 ∪ {𝑠}) ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ (𝑢 ∪ {𝑠}) ∧ ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) | 
| 112 |  | sseq2 4009 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑢 ∪ {𝑠}) → (𝑎 ⊆ 𝑧 ↔ 𝑎 ⊆ (𝑢 ∪ {𝑠}))) | 
| 113 |  | pweq 4613 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = (𝑢 ∪ {𝑠}) → 𝒫 𝑧 = 𝒫 (𝑢 ∪ {𝑠})) | 
| 114 | 113 | ineq1d 4218 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑢 ∪ {𝑠}) → (𝒫 𝑧 ∩ Fin) = (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)) | 
| 115 | 114 | raleqdv 3325 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑢 ∪ {𝑠}) → (∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 ↔ ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) | 
| 116 | 112, 115 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑢 ∪ {𝑠}) → ((𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) ↔ (𝑎 ⊆ (𝑢 ∪ {𝑠}) ∧ ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) | 
| 117 | 116 | elrab 3691 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑢 ∪ {𝑠}) ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ↔ ((𝑢 ∪ {𝑠}) ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ (𝑢 ∪ {𝑠}) ∧ ∀𝑏 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) | 
| 118 | 111, 117 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → (𝑢 ∪ {𝑠}) ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)}) | 
| 119 |  | elun1 4181 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑢 ∪ {𝑠}) ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} → (𝑢 ∪ {𝑠}) ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪
{∅})) | 
| 120 | 118, 119 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → (𝑢 ∪ {𝑠}) ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪
{∅})) | 
| 121 |  | vsnid 4662 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑠 ∈ {𝑠} | 
| 122 |  | elun2 4182 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑠 ∈ {𝑠} → 𝑠 ∈ (𝑢 ∪ {𝑠})) | 
| 123 | 121, 122 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 𝑠 ∈ (𝑢 ∪ {𝑠}) | 
| 124 |  | intss1 4962 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑠 ∈ 𝑡 → ∩ 𝑡 ⊆ 𝑠) | 
| 125 |  | sseq1 4008 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑤 = ∩
𝑡 → (𝑤 ⊆ 𝑠 ↔ ∩ 𝑡 ⊆ 𝑠)) | 
| 126 | 124, 125 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑠 ∈ 𝑡 → (𝑤 = ∩ 𝑡 → 𝑤 ⊆ 𝑠)) | 
| 127 | 126 | impcom 407 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑤 = ∩
𝑡 ∧ 𝑠 ∈ 𝑡) → 𝑤 ⊆ 𝑠) | 
| 128 | 127 | ad4ant24 754 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ 𝑦 ∈ 𝑤) ∧ 𝑠 ∈ 𝑡) → 𝑤 ⊆ 𝑠) | 
| 129 | 128 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑤 ∈ 𝑢 ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ 𝑠 ∈ 𝑡)) → 𝑤 ⊆ 𝑠) | 
| 130 | 129 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑤 ∈ 𝑢 ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑤 ⊆ 𝑠) | 
| 131 | 130 | adantll 714 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑤 ⊆ 𝑠) | 
| 132 |  | simprlr 779 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑦 ∈ 𝑤) | 
| 133 | 131, 132 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑦 ∈ 𝑠) | 
| 134 | 90 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ 𝑦 ∈ 𝑤) → 𝑡 ⊆ 𝑥) | 
| 135 | 134 | ad2antrl 728 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑡 ⊆ 𝑥) | 
| 136 |  | simprrl 780 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑠 ∈ 𝑡) | 
| 137 | 135, 136 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → 𝑠 ∈ 𝑥) | 
| 138 |  | elin 3966 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑠 ∈ (𝑥 ∩ 𝑢) ↔ (𝑠 ∈ 𝑥 ∧ 𝑠 ∈ 𝑢)) | 
| 139 |  | elunii 4911 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑦 ∈ 𝑠 ∧ 𝑠 ∈ (𝑥 ∩ 𝑢)) → 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)) | 
| 140 | 139 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ 𝑠 → (𝑠 ∈ (𝑥 ∩ 𝑢) → 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) | 
| 141 | 138, 140 | biimtrrid 243 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 ∈ 𝑠 → ((𝑠 ∈ 𝑥 ∧ 𝑠 ∈ 𝑢) → 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) | 
| 142 | 141 | expd 415 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 ∈ 𝑠 → (𝑠 ∈ 𝑥 → (𝑠 ∈ 𝑢 → 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) | 
| 143 | 133, 137,
142 | sylc 65 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → (𝑠 ∈ 𝑢 → 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) | 
| 144 | 143 | con3d 152 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) → (¬ 𝑦 ∈ ∪ (𝑥
∩ 𝑢) → ¬ 𝑠 ∈ 𝑢)) | 
| 145 | 144 | expr 456 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤)) → ((𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) → (¬ 𝑦 ∈ ∪ (𝑥
∩ 𝑢) → ¬ 𝑠 ∈ 𝑢))) | 
| 146 | 145 | com23 86 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ 𝑦 ∈ 𝑤)) → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ((𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) → ¬ 𝑠 ∈ 𝑢))) | 
| 147 | 146 | exp32 420 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) → ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ((𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) → ¬ 𝑠 ∈ 𝑢))))) | 
| 148 | 147 | imp55 442 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ¬ 𝑠 ∈ 𝑢) | 
| 149 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑠 ∈ V | 
| 150 |  | eleq1w 2823 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑣 = 𝑠 → (𝑣 ∈ (𝑢 ∪ {𝑠}) ↔ 𝑠 ∈ (𝑢 ∪ {𝑠}))) | 
| 151 |  | elequ1 2114 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑣 = 𝑠 → (𝑣 ∈ 𝑢 ↔ 𝑠 ∈ 𝑢)) | 
| 152 | 151 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑣 = 𝑠 → (¬ 𝑣 ∈ 𝑢 ↔ ¬ 𝑠 ∈ 𝑢)) | 
| 153 | 150, 152 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑣 = 𝑠 → ((𝑣 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑣 ∈ 𝑢) ↔ (𝑠 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑠 ∈ 𝑢))) | 
| 154 | 149, 153 | spcev 3605 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑠 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑠 ∈ 𝑢) → ∃𝑣(𝑣 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑣 ∈ 𝑢)) | 
| 155 | 123, 148,
154 | sylancr 587 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ∃𝑣(𝑣 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑣 ∈ 𝑢)) | 
| 156 |  | nss 4047 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬
(𝑢 ∪ {𝑠}) ⊆ 𝑢 ↔ ∃𝑣(𝑣 ∈ (𝑢 ∪ {𝑠}) ∧ ¬ 𝑣 ∈ 𝑢)) | 
| 157 | 155, 156 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ¬ (𝑢 ∪ {𝑠}) ⊆ 𝑢) | 
| 158 |  | eqimss2 4042 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑢 = (𝑢 ∪ {𝑠}) → (𝑢 ∪ {𝑠}) ⊆ 𝑢) | 
| 159 | 158 | necon3bi 2966 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (¬
(𝑢 ∪ {𝑠}) ⊆ 𝑢 → 𝑢 ≠ (𝑢 ∪ {𝑠})) | 
| 160 | 157, 159 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑢 ≠ (𝑢 ∪ {𝑠})) | 
| 161 | 160, 103 | jctil 519 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → (𝑢 ⊆ (𝑢 ∪ {𝑠}) ∧ 𝑢 ≠ (𝑢 ∪ {𝑠}))) | 
| 162 |  | df-pss 3970 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑢 ⊊ (𝑢 ∪ {𝑠}) ↔ (𝑢 ⊆ (𝑢 ∪ {𝑠}) ∧ 𝑢 ≠ (𝑢 ∪ {𝑠}))) | 
| 163 | 161, 162 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → 𝑢 ⊊ (𝑢 ∪ {𝑠})) | 
| 164 |  | psseq2 4090 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑣 = (𝑢 ∪ {𝑠}) → (𝑢 ⊊ 𝑣 ↔ 𝑢 ⊊ (𝑢 ∪ {𝑠}))) | 
| 165 | 164 | rspcev 3621 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑢 ∪ {𝑠}) ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ∧ 𝑢 ⊊ (𝑢 ∪ {𝑠})) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣) | 
| 166 | 120, 163,
165 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) ∧ (𝑠 ∈ 𝑡 ∧ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣) | 
| 167 | 84, 166 | rexlimddv 3160 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣) | 
| 168 | 167 | exp45 438 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) → ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)))) | 
| 169 | 168 | expd 415 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) → (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → (𝑤 = ∩ 𝑡 → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣))))) | 
| 170 | 169 | rexlimdv 3152 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) → (∃𝑡 ∈ (𝒫 𝑥 ∩ Fin)𝑤 = ∩ 𝑡 → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)))) | 
| 171 | 170 | ex 412 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → (∃𝑡 ∈ (𝒫 𝑥 ∩ Fin)𝑤 = ∩ 𝑡 → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣))))) | 
| 172 | 83, 171 | mpdd 43 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → (𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)))) | 
| 173 | 172 | rexlimdv 3152 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (∃𝑤 ∈ 𝑢 𝑦 ∈ 𝑤 → (¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣))) | 
| 174 | 77, 173 | biimtrid 242 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑦 ∈ ∪ 𝑢 → (¬ 𝑦 ∈ ∪ (𝑥
∩ 𝑢) →
∃𝑣 ∈ ({𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣))) | 
| 175 | 174 | rexlimdv 3152 | . . . . . . . . . . . . . . . 16
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (∃𝑦 ∈ ∪ 𝑢
¬ 𝑦 ∈ ∪ (𝑥
∩ 𝑢) →
∃𝑣 ∈ ({𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)) | 
| 176 | 76, 175 | biimtrid 242 | . . . . . . . . . . . . . . 15
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (¬ ∪ 𝑢
⊆ ∪ (𝑥 ∩ 𝑢) → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)) | 
| 177 | 18, 73, 176 | 3syld 60 | . . . . . . . . . . . . . 14
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑋 = ∪ 𝑎 → ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣)) | 
| 178 | 177 | con3d 152 | . . . . . . . . . . . . 13
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (¬ ∃𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎)) | 
| 179 | 14, 178 | biimtrid 242 | . . . . . . . . . . . 12
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎)) | 
| 180 | 179 | ex 412 | . . . . . . . . . . 11
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → ((𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎))) | 
| 181 | 180 | adantr 480 | . . . . . . . . . 10
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → ((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎))) | 
| 182 |  | ssun1 4177 | . . . . . . . . . . . . . 14
⊢ {𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪
{∅}) | 
| 183 |  | eqimss2 4042 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑎 → 𝑎 ⊆ 𝑧) | 
| 184 | 183 | biantrurd 532 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑎 → (∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 ↔ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) | 
| 185 |  | pweq 4613 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑎 → 𝒫 𝑧 = 𝒫 𝑎) | 
| 186 | 185 | ineq1d 4218 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑎 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑎 ∩ Fin)) | 
| 187 | 186 | raleqdv 3325 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑎 → (∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 ↔ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏)) | 
| 188 | 184, 187 | bitr3d 281 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑎 → ((𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) ↔ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏)) | 
| 189 |  | simpll3 1214 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → 𝑎 ∈ 𝒫 (fi‘𝑥)) | 
| 190 |  | simplr 768 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) | 
| 191 | 188, 189,
190 | elrabd 3693 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → 𝑎 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)}) | 
| 192 | 182, 191 | sselid 3980 | . . . . . . . . . . . . 13
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → 𝑎 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪
{∅})) | 
| 193 |  | psseq2 4090 | . . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑎 → (𝑢 ⊊ 𝑣 ↔ 𝑢 ⊊ 𝑎)) | 
| 194 | 193 | notbid 318 | . . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑎 → (¬ 𝑢 ⊊ 𝑣 ↔ ¬ 𝑢 ⊊ 𝑎)) | 
| 195 | 194 | rspcv 3617 | . . . . . . . . . . . . 13
⊢ (𝑎 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) →
(∀𝑣 ∈ ({𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑢 ⊊ 𝑎)) | 
| 196 | 192, 195 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑢 ⊊ 𝑎)) | 
| 197 |  | id 22 | . . . . . . . . . . . . . . . . 17
⊢ (𝑎 = ∅ → 𝑎 = ∅) | 
| 198 |  | 0elpw 5355 | . . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ 𝒫 𝑎 | 
| 199 |  | 0fi 9083 | . . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ Fin | 
| 200 | 198, 199 | elini 4198 | . . . . . . . . . . . . . . . . 17
⊢ ∅
∈ (𝒫 𝑎 ∩
Fin) | 
| 201 | 197, 200 | eqeltrdi 2848 | . . . . . . . . . . . . . . . 16
⊢ (𝑎 = ∅ → 𝑎 ∈ (𝒫 𝑎 ∩ Fin)) | 
| 202 |  | unieq 4917 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑎 → ∪ 𝑏 = ∪
𝑎) | 
| 203 | 202 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑎 → (𝑋 = ∪ 𝑏 ↔ 𝑋 = ∪ 𝑎)) | 
| 204 | 203 | notbid 318 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑎 → (¬ 𝑋 = ∪ 𝑏 ↔ ¬ 𝑋 = ∪ 𝑎)) | 
| 205 | 204 | rspccv 3618 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑏 ∈
(𝒫 𝑎 ∩ Fin)
¬ 𝑋 = ∪ 𝑏
→ (𝑎 ∈ (𝒫
𝑎 ∩ Fin) → ¬
𝑋 = ∪ 𝑎)) | 
| 206 | 201, 205 | syl5 34 | . . . . . . . . . . . . . . 15
⊢
(∀𝑏 ∈
(𝒫 𝑎 ∩ Fin)
¬ 𝑋 = ∪ 𝑏
→ (𝑎 = ∅ →
¬ 𝑋 = ∪ 𝑎)) | 
| 207 | 206 | necon2ad 2954 | . . . . . . . . . . . . . 14
⊢
(∀𝑏 ∈
(𝒫 𝑎 ∩ Fin)
¬ 𝑋 = ∪ 𝑏
→ (𝑋 = ∪ 𝑎
→ 𝑎 ≠
∅)) | 
| 208 | 207 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (𝑋 = ∪ 𝑎 → 𝑎 ≠ ∅)) | 
| 209 |  | psseq1 4089 | . . . . . . . . . . . . . . 15
⊢ (𝑢 = ∅ → (𝑢 ⊊ 𝑎 ↔ ∅ ⊊ 𝑎)) | 
| 210 | 209 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (𝑢 ⊊ 𝑎 ↔ ∅ ⊊ 𝑎)) | 
| 211 |  | 0pss 4446 | . . . . . . . . . . . . . 14
⊢ (∅
⊊ 𝑎 ↔ 𝑎 ≠ ∅) | 
| 212 | 210, 211 | bitrdi 287 | . . . . . . . . . . . . 13
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (𝑢 ⊊ 𝑎 ↔ 𝑎 ≠ ∅)) | 
| 213 | 208, 212 | sylibrd 259 | . . . . . . . . . . . 12
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (𝑋 = ∪ 𝑎 → 𝑢 ⊊ 𝑎)) | 
| 214 | 196, 213 | nsyld 156 | . . . . . . . . . . 11
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) ∧ 𝑢 = ∅) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎)) | 
| 215 | 214 | ex 412 | . . . . . . . . . 10
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → (𝑢 = ∅ → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎))) | 
| 216 | 181, 215 | jaod 859 | . . . . . . . . 9
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → (((𝑢 ∈ 𝒫
(fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)) ∨ 𝑢 = ∅) → (∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎))) | 
| 217 | 13, 216 | biimtrid 242 | . . . . . . . 8
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → (𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) →
(∀𝑣 ∈ ({𝑧 ∈ 𝒫
(fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎))) | 
| 218 | 217 | rexlimdv 3152 | . . . . . . 7
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → (∃𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎)) | 
| 219 | 3, 218 | mpd 15 | . . . . . 6
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏) → ¬ 𝑋 = ∪
𝑎) | 
| 220 | 219 | ex 412 | . . . . 5
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪
𝑏 → ¬ 𝑋 = ∪
𝑎)) | 
| 221 | 1, 220 | biimtrrid 243 | . . . 4
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (¬ ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ 𝑎)) | 
| 222 | 221 | con4d 115 | . . 3
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) | 
| 223 | 222 | 3exp 1119 | . 2
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → (𝑎 ∈ 𝒫 (fi‘𝑥) → (𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)))) | 
| 224 | 223 | ralrimdv 3151 | 1
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → ∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |