| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | supsrlem.2 | . . . . . . 7
⊢ 𝐶 ∈
R | 
| 2 |  | 0idsr 11138 | . . . . . . 7
⊢ (𝐶 ∈ R →
(𝐶
+R 0R) = 𝐶) | 
| 3 | 1, 2 | mp1i 13 | . . . . . 6
⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → (𝐶 +R
0R) = 𝐶) | 
| 4 |  | simpl 482 | . . . . . 6
⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → 𝐶 ∈ 𝐴) | 
| 5 | 3, 4 | eqeltrd 2840 | . . . . 5
⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → (𝐶 +R
0R) ∈ 𝐴) | 
| 6 |  | 1pr 11056 | . . . . . . 7
⊢
1P ∈ P | 
| 7 | 6 | elexi 3502 | . . . . . 6
⊢
1P ∈ V | 
| 8 |  | opeq1 4872 | . . . . . . . . . 10
⊢ (𝑤 = 1P
→ 〈𝑤,
1P〉 = 〈1P,
1P〉) | 
| 9 | 8 | eceq1d 8786 | . . . . . . . . 9
⊢ (𝑤 = 1P
→ [〈𝑤,
1P〉] ~R =
[〈1P, 1P〉]
~R ) | 
| 10 |  | df-0r 11101 | . . . . . . . . 9
⊢
0R = [〈1P,
1P〉] ~R | 
| 11 | 9, 10 | eqtr4di 2794 | . . . . . . . 8
⊢ (𝑤 = 1P
→ [〈𝑤,
1P〉] ~R =
0R) | 
| 12 | 11 | oveq2d 7448 | . . . . . . 7
⊢ (𝑤 = 1P
→ (𝐶
+R [〈𝑤, 1P〉]
~R ) = (𝐶 +R
0R)) | 
| 13 | 12 | eleq1d 2825 | . . . . . 6
⊢ (𝑤 = 1P
→ ((𝐶
+R [〈𝑤, 1P〉]
~R ) ∈ 𝐴 ↔ (𝐶 +R
0R) ∈ 𝐴)) | 
| 14 |  | supsrlem.1 | . . . . . 6
⊢ 𝐵 = {𝑤 ∣ (𝐶 +R [〈𝑤,
1P〉] ~R ) ∈ 𝐴} | 
| 15 | 7, 13, 14 | elab2 3681 | . . . . 5
⊢
(1P ∈ 𝐵 ↔ (𝐶 +R
0R) ∈ 𝐴) | 
| 16 | 5, 15 | sylibr 234 | . . . 4
⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) →
1P ∈ 𝐵) | 
| 17 | 16 | ne0d 4341 | . . 3
⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → 𝐵 ≠ ∅) | 
| 18 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑦 = 𝐶 → (𝑦 <R 𝑥 ↔ 𝐶 <R 𝑥)) | 
| 19 | 18 | rspccv 3618 | . . . . . . 7
⊢
(∀𝑦 ∈
𝐴 𝑦 <R 𝑥 → (𝐶 ∈ 𝐴 → 𝐶 <R 𝑥)) | 
| 20 |  | 0lt1sr 11136 | . . . . . . . . . . . . 13
⊢
0R <R
1R | 
| 21 |  | m1r 11123 | . . . . . . . . . . . . . 14
⊢
-1R ∈ R | 
| 22 |  | ltasr 11141 | . . . . . . . . . . . . . 14
⊢
(-1R ∈ R →
(0R <R
1R ↔ (-1R
+R 0R)
<R (-1R
+R 1R))) | 
| 23 | 21, 22 | ax-mp 5 | . . . . . . . . . . . . 13
⊢
(0R <R
1R ↔ (-1R
+R 0R)
<R (-1R
+R 1R)) | 
| 24 | 20, 23 | mpbi 230 | . . . . . . . . . . . 12
⊢
(-1R +R
0R) <R
(-1R +R
1R) | 
| 25 |  | 0idsr 11138 | . . . . . . . . . . . . 13
⊢
(-1R ∈ R →
(-1R +R
0R) = -1R) | 
| 26 | 21, 25 | ax-mp 5 | . . . . . . . . . . . 12
⊢
(-1R +R
0R) = -1R | 
| 27 |  | m1p1sr 11133 | . . . . . . . . . . . 12
⊢
(-1R +R
1R) = 0R | 
| 28 | 24, 26, 27 | 3brtr3i 5171 | . . . . . . . . . . 11
⊢
-1R <R
0R | 
| 29 |  | ltasr 11141 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ R →
(-1R <R
0R ↔ (𝐶 +R
-1R) <R (𝐶 +R
0R))) | 
| 30 | 1, 29 | ax-mp 5 | . . . . . . . . . . 11
⊢
(-1R <R
0R ↔ (𝐶 +R
-1R) <R (𝐶 +R
0R)) | 
| 31 | 28, 30 | mpbi 230 | . . . . . . . . . 10
⊢ (𝐶 +R
-1R) <R (𝐶 +R
0R) | 
| 32 | 1, 2 | ax-mp 5 | . . . . . . . . . 10
⊢ (𝐶 +R
0R) = 𝐶 | 
| 33 | 31, 32 | breqtri 5167 | . . . . . . . . 9
⊢ (𝐶 +R
-1R) <R 𝐶 | 
| 34 |  | ltsosr 11135 | . . . . . . . . . 10
⊢ 
<R Or R | 
| 35 |  | ltrelsr 11109 | . . . . . . . . . 10
⊢ 
<R ⊆ (R ×
R) | 
| 36 | 34, 35 | sotri 6146 | . . . . . . . . 9
⊢ (((𝐶 +R
-1R) <R 𝐶 ∧ 𝐶 <R 𝑥) → (𝐶 +R
-1R) <R 𝑥) | 
| 37 | 33, 36 | mpan 690 | . . . . . . . 8
⊢ (𝐶 <R
𝑥 → (𝐶 +R
-1R) <R 𝑥) | 
| 38 | 1 | map2psrpr 11151 | . . . . . . . 8
⊢ ((𝐶 +R
-1R) <R 𝑥 ↔ ∃𝑣 ∈ P (𝐶 +R [〈𝑣,
1P〉] ~R ) = 𝑥) | 
| 39 | 37, 38 | sylib 218 | . . . . . . 7
⊢ (𝐶 <R
𝑥 → ∃𝑣 ∈ P (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥) | 
| 40 | 19, 39 | syl6 35 | . . . . . 6
⊢
(∀𝑦 ∈
𝐴 𝑦 <R 𝑥 → (𝐶 ∈ 𝐴 → ∃𝑣 ∈ P (𝐶 +R [〈𝑣,
1P〉] ~R ) = 𝑥)) | 
| 41 |  | breq2 5146 | . . . . . . . . . 10
⊢ ((𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥 → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) ↔ 𝑦 <R
𝑥)) | 
| 42 | 41 | ralbidv 3177 | . . . . . . . . 9
⊢ ((𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) ↔
∀𝑦 ∈ 𝐴 𝑦 <R 𝑥)) | 
| 43 | 14 | eqabri 2884 | . . . . . . . . . . 11
⊢ (𝑤 ∈ 𝐵 ↔ (𝐶 +R [〈𝑤,
1P〉] ~R ) ∈ 𝐴) | 
| 44 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ (𝑦 = (𝐶 +R [〈𝑤,
1P〉] ~R ) → (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) ↔ (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
))) | 
| 45 | 44 | rspccv 3618 | . . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝐴 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) → ((𝐶 +R
[〈𝑤,
1P〉] ~R ) ∈ 𝐴 → (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
))) | 
| 46 | 1 | ltpsrpr 11150 | . . . . . . . . . . . 12
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R ) ↔ 𝑤<P
𝑣) | 
| 47 | 45, 46 | imbitrdi 251 | . . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝐴 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) → ((𝐶 +R
[〈𝑤,
1P〉] ~R ) ∈ 𝐴 → 𝑤<P 𝑣)) | 
| 48 | 43, 47 | biimtrid 242 | . . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) → (𝑤 ∈ 𝐵 → 𝑤<P 𝑣)) | 
| 49 | 48 | ralrimiv 3144 | . . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∀𝑤 ∈ 𝐵 𝑤<P 𝑣) | 
| 50 | 42, 49 | biimtrrdi 254 | . . . . . . . 8
⊢ ((𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∀𝑤 ∈ 𝐵 𝑤<P 𝑣)) | 
| 51 | 50 | com12 32 | . . . . . . 7
⊢
(∀𝑦 ∈
𝐴 𝑦 <R 𝑥 → ((𝐶 +R [〈𝑣,
1P〉] ~R ) = 𝑥 → ∀𝑤 ∈ 𝐵 𝑤<P 𝑣)) | 
| 52 | 51 | reximdv 3169 | . . . . . 6
⊢
(∀𝑦 ∈
𝐴 𝑦 <R 𝑥 → (∃𝑣 ∈ P (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥 → ∃𝑣 ∈ P
∀𝑤 ∈ 𝐵 𝑤<P 𝑣)) | 
| 53 | 40, 52 | syld 47 | . . . . 5
⊢
(∀𝑦 ∈
𝐴 𝑦 <R 𝑥 → (𝐶 ∈ 𝐴 → ∃𝑣 ∈ P ∀𝑤 ∈ 𝐵 𝑤<P 𝑣)) | 
| 54 | 53 | rexlimivw 3150 | . . . 4
⊢
(∃𝑥 ∈
R ∀𝑦
∈ 𝐴 𝑦 <R 𝑥 → (𝐶 ∈ 𝐴 → ∃𝑣 ∈ P ∀𝑤 ∈ 𝐵 𝑤<P 𝑣)) | 
| 55 | 54 | impcom 407 | . . 3
⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑣 ∈ P
∀𝑤 ∈ 𝐵 𝑤<P 𝑣) | 
| 56 |  | supexpr 11095 | . . 3
⊢ ((𝐵 ≠ ∅ ∧ ∃𝑣 ∈ P
∀𝑤 ∈ 𝐵 𝑤<P 𝑣) → ∃𝑣 ∈ P
(∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢))) | 
| 57 | 17, 55, 56 | syl2anc 584 | . 2
⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑣 ∈ P
(∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢))) | 
| 58 | 1 | mappsrpr 11149 | . . . . . . 7
⊢ ((𝐶 +R
-1R) <R (𝐶 +R [〈𝑣,
1P〉] ~R ) ↔ 𝑣 ∈
P) | 
| 59 | 35 | brel 5749 | . . . . . . 7
⊢ ((𝐶 +R
-1R) <R (𝐶 +R [〈𝑣,
1P〉] ~R ) → ((𝐶 +R
-1R) ∈ R ∧ (𝐶 +R [〈𝑣,
1P〉] ~R ) ∈
R)) | 
| 60 | 58, 59 | sylbir 235 | . . . . . 6
⊢ (𝑣 ∈ P →
((𝐶
+R -1R) ∈
R ∧ (𝐶
+R [〈𝑣, 1P〉]
~R ) ∈ R)) | 
| 61 | 60 | simprd 495 | . . . . 5
⊢ (𝑣 ∈ P →
(𝐶
+R [〈𝑣, 1P〉]
~R ) ∈ R) | 
| 62 | 61 | adantl 481 | . . . 4
⊢ (((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) → (𝐶 +R
[〈𝑣,
1P〉] ~R ) ∈
R) | 
| 63 | 34, 35 | sotri 6146 | . . . . . . . . . . . . . . 15
⊢ (((𝐶 +R
-1R) <R (𝐶 +R [〈𝑣,
1P〉] ~R ) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R )
<R 𝑦) → (𝐶 +R
-1R) <R 𝑦) | 
| 64 | 58, 63 | sylanbr 582 | . . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ P ∧
(𝐶
+R [〈𝑣, 1P〉]
~R ) <R 𝑦) → (𝐶 +R
-1R) <R 𝑦) | 
| 65 | 1 | map2psrpr 11151 | . . . . . . . . . . . . . 14
⊢ ((𝐶 +R
-1R) <R 𝑦 ↔ ∃𝑤 ∈ P (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) | 
| 66 | 64, 65 | sylib 218 | . . . . . . . . . . . . 13
⊢ ((𝑣 ∈ P ∧
(𝐶
+R [〈𝑣, 1P〉]
~R ) <R 𝑦) → ∃𝑤 ∈ P (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) | 
| 67 |  | rexex 3075 | . . . . . . . . . . . . 13
⊢
(∃𝑤 ∈
P (𝐶
+R [〈𝑤, 1P〉]
~R ) = 𝑦 → ∃𝑤(𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) | 
| 68 |  | df-ral 3061 | . . . . . . . . . . . . . . 15
⊢
(∀𝑤 ∈
𝐵 ¬ 𝑣<P 𝑤 ↔ ∀𝑤(𝑤 ∈ 𝐵 → ¬ 𝑣<P 𝑤)) | 
| 69 |  | 19.29 1872 | . . . . . . . . . . . . . . . 16
⊢
((∀𝑤(𝑤 ∈ 𝐵 → ¬ 𝑣<P 𝑤) ∧ ∃𝑤(𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) → ∃𝑤((𝑤 ∈ 𝐵 → ¬ 𝑣<P 𝑤) ∧ (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦)) | 
| 70 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → ((𝐶 +R [〈𝑤,
1P〉] ~R ) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | 
| 71 | 43, 70 | bitrid 283 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → (𝑤 ∈ 𝐵 ↔ 𝑦 ∈ 𝐴)) | 
| 72 | 1 | ltpsrpr 11150 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐶 +R
[〈𝑣,
1P〉] ~R )
<R (𝐶 +R [〈𝑤,
1P〉] ~R ) ↔ 𝑣<P
𝑤) | 
| 73 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → ((𝐶 +R [〈𝑣,
1P〉] ~R )
<R (𝐶 +R [〈𝑤,
1P〉] ~R ) ↔ (𝐶 +R
[〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 74 | 72, 73 | bitr3id 285 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → (𝑣<P 𝑤 ↔ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 75 | 74 | notbid 318 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → (¬ 𝑣<P
𝑤 ↔ ¬ (𝐶 +R
[〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 76 | 71, 75 | imbi12d 344 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → ((𝑤 ∈ 𝐵 → ¬ 𝑣<P 𝑤) ↔ (𝑦 ∈ 𝐴 → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦))) | 
| 77 | 76 | biimpac 478 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ 𝐵 → ¬ 𝑣<P 𝑤) ∧ (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) → (𝑦 ∈ 𝐴 → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 78 | 77 | exlimiv 1929 | . . . . . . . . . . . . . . . 16
⊢
(∃𝑤((𝑤 ∈ 𝐵 → ¬ 𝑣<P 𝑤) ∧ (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) → (𝑦 ∈ 𝐴 → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 79 | 69, 78 | syl 17 | . . . . . . . . . . . . . . 15
⊢
((∀𝑤(𝑤 ∈ 𝐵 → ¬ 𝑣<P 𝑤) ∧ ∃𝑤(𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) → (𝑦 ∈ 𝐴 → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 80 | 68, 79 | sylanb 581 | . . . . . . . . . . . . . 14
⊢
((∀𝑤 ∈
𝐵 ¬ 𝑣<P 𝑤 ∧ ∃𝑤(𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) → (𝑦 ∈ 𝐴 → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 81 | 80 | expcom 413 | . . . . . . . . . . . . 13
⊢
(∃𝑤(𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → (∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 → (𝑦 ∈ 𝐴 → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦))) | 
| 82 | 66, 67, 81 | 3syl 18 | . . . . . . . . . . . 12
⊢ ((𝑣 ∈ P ∧
(𝐶
+R [〈𝑣, 1P〉]
~R ) <R 𝑦) → (∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 → (𝑦 ∈ 𝐴 → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦))) | 
| 83 | 82 | impd 410 | . . . . . . . . . . 11
⊢ ((𝑣 ∈ P ∧
(𝐶
+R [〈𝑣, 1P〉]
~R ) <R 𝑦) → ((∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ 𝑦 ∈ 𝐴) → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 84 | 83 | impancom 451 | . . . . . . . . . 10
⊢ ((𝑣 ∈ P ∧
(∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ 𝑦 ∈ 𝐴)) → ((𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦 → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 85 | 84 | pm2.01d 190 | . . . . . . . . 9
⊢ ((𝑣 ∈ P ∧
(∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ 𝑦 ∈ 𝐴)) → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) | 
| 86 | 85 | expr 456 | . . . . . . . 8
⊢ ((𝑣 ∈ P ∧
∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤) → (𝑦 ∈ 𝐴 → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 87 | 86 | ralrimiv 3144 | . . . . . . 7
⊢ ((𝑣 ∈ P ∧
∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤) → ∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) | 
| 88 | 87 | ex 412 | . . . . . 6
⊢ (𝑣 ∈ P →
(∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 → ∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 89 | 88 | adantl 481 | . . . . 5
⊢ (((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) →
(∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 → ∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 90 |  | r19.29 3113 | . . . . . . . . . . . . . 14
⊢
((∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) ∧ ∃𝑤 ∈ P (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → ∃𝑤 ∈ P ((𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) ∧ (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦)) | 
| 91 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → ((𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R ) ↔ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ))) | 
| 92 | 46, 91 | bitr3id 285 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → (𝑤<P 𝑣 ↔ 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R
))) | 
| 93 | 92 | biimprd 248 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) → 𝑤<P
𝑣)) | 
| 94 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑢 ∈ V | 
| 95 |  | opeq1 4872 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑢 → 〈𝑤, 1P〉 =
〈𝑢,
1P〉) | 
| 96 | 95 | eceq1d 8786 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑢 → [〈𝑤, 1P〉]
~R = [〈𝑢, 1P〉]
~R ) | 
| 97 | 96 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑢 → (𝐶 +R [〈𝑤,
1P〉] ~R ) = (𝐶 +R
[〈𝑢,
1P〉] ~R
)) | 
| 98 | 97 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑢 → ((𝐶 +R [〈𝑤,
1P〉] ~R ) ∈ 𝐴 ↔ (𝐶 +R [〈𝑢,
1P〉] ~R ) ∈ 𝐴)) | 
| 99 | 94, 98, 14 | elab2 3681 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ 𝐵 ↔ (𝐶 +R [〈𝑢,
1P〉] ~R ) ∈ 𝐴) | 
| 100 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = (𝐶 +R [〈𝑢,
1P〉] ~R ) → ((𝐶 +R
[〈𝑤,
1P〉] ~R )
<R 𝑧 ↔ (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑢,
1P〉] ~R
))) | 
| 101 | 1 | ltpsrpr 11150 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑢,
1P〉] ~R ) ↔ 𝑤<P
𝑢) | 
| 102 | 100, 101 | bitrdi 287 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝐶 +R [〈𝑢,
1P〉] ~R ) → ((𝐶 +R
[〈𝑤,
1P〉] ~R )
<R 𝑧 ↔ 𝑤<P 𝑢)) | 
| 103 | 102 | rspcev 3621 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐶 +R
[〈𝑢,
1P〉] ~R ) ∈ 𝐴 ∧ 𝑤<P 𝑢) → ∃𝑧 ∈ 𝐴 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R 𝑧) | 
| 104 | 99, 103 | sylanb 581 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑤<P 𝑢) → ∃𝑧 ∈ 𝐴 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R 𝑧) | 
| 105 | 104 | rexlimiva 3146 | . . . . . . . . . . . . . . . . . 18
⊢
(∃𝑢 ∈
𝐵 𝑤<P 𝑢 → ∃𝑧 ∈ 𝐴 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R 𝑧) | 
| 106 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → ((𝐶 +R [〈𝑤,
1P〉] ~R )
<R 𝑧 ↔ 𝑦 <R 𝑧)) | 
| 107 | 106 | rexbidv 3178 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → (∃𝑧 ∈ 𝐴 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R 𝑧 ↔ ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) | 
| 108 | 105, 107 | imbitrid 244 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → (∃𝑢 ∈ 𝐵 𝑤<P 𝑢 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) | 
| 109 | 93, 108 | imim12d 81 | . . . . . . . . . . . . . . . 16
⊢ ((𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦 → ((𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 110 | 109 | impcom 407 | . . . . . . . . . . . . . . 15
⊢ (((𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) ∧ (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) | 
| 111 | 110 | rexlimivw 3150 | . . . . . . . . . . . . . 14
⊢
(∃𝑤 ∈
P ((𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) ∧ (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) | 
| 112 | 90, 111 | syl 17 | . . . . . . . . . . . . 13
⊢
((∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) ∧ ∃𝑤 ∈ P (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) | 
| 113 | 65, 112 | sylan2b 594 | . . . . . . . . . . . 12
⊢
((∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) ∧ (𝐶 +R
-1R) <R 𝑦) → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) | 
| 114 | 113 | ex 412 | . . . . . . . . . . 11
⊢
(∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) → ((𝐶 +R
-1R) <R 𝑦 → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 115 | 114 | adantl 481 | . . . . . . . . . 10
⊢ (((𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → ((𝐶 +R
-1R) <R 𝑦 → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 116 | 115 | a1dd 50 | . . . . . . . . 9
⊢ (((𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → ((𝐶 +R
-1R) <R 𝑦 → (𝑦 ∈ R → (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) | 
| 117 | 34, 35 | sotri2 6148 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ R ∧
¬ (𝐶
+R -1R)
<R 𝑦 ∧ (𝐶 +R
-1R) <R 𝐶) → 𝑦 <R 𝐶) | 
| 118 | 33, 117 | mp3an3 1451 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ R ∧
¬ (𝐶
+R -1R)
<R 𝑦) → 𝑦 <R 𝐶) | 
| 119 |  | breq2 5146 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝐶 → (𝑦 <R 𝑧 ↔ 𝑦 <R 𝐶)) | 
| 120 | 119 | rspcev 3621 | . . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ 𝐴 ∧ 𝑦 <R 𝐶) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) | 
| 121 | 120 | ex 412 | . . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝐴 → (𝑦 <R 𝐶 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) | 
| 122 | 121 | a1dd 50 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ 𝐴 → (𝑦 <R 𝐶 → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 123 | 118, 122 | syl5 34 | . . . . . . . . . . 11
⊢ (𝐶 ∈ 𝐴 → ((𝑦 ∈ R ∧ ¬ (𝐶 +R
-1R) <R 𝑦) → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 124 | 123 | expcomd 416 | . . . . . . . . . 10
⊢ (𝐶 ∈ 𝐴 → (¬ (𝐶 +R
-1R) <R 𝑦 → (𝑦 ∈ R → (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) | 
| 125 | 124 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → (¬ (𝐶 +R
-1R) <R 𝑦 → (𝑦 ∈ R → (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) | 
| 126 | 116, 125 | pm2.61d 179 | . . . . . . . 8
⊢ (((𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → (𝑦 ∈ R → (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 127 | 126 | ralrimiv 3144 | . . . . . . 7
⊢ (((𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → ∀𝑦 ∈ R (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) | 
| 128 | 127 | ex 412 | . . . . . 6
⊢ ((𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P) →
(∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) → ∀𝑦 ∈ R (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 129 | 128 | adantlr 715 | . . . . 5
⊢ (((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) →
(∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) → ∀𝑦 ∈ R (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 130 | 89, 129 | anim12d 609 | . . . 4
⊢ (((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) →
((∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → (∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) | 
| 131 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) → (𝑥 <R
𝑦 ↔ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 132 | 131 | notbid 318 | . . . . . . 7
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) → (¬
𝑥
<R 𝑦 ↔ ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 133 | 132 | ralbidv 3177 | . . . . . 6
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) →
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) | 
| 134 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) → (𝑦 <R
𝑥 ↔ 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R
))) | 
| 135 | 134 | imbi1d 341 | . . . . . . 7
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) → ((𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) ↔ (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 136 | 135 | ralbidv 3177 | . . . . . 6
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) →
(∀𝑦 ∈
R (𝑦
<R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) ↔ ∀𝑦 ∈ R (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 137 | 133, 136 | anbi12d 632 | . . . . 5
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) →
((∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) | 
| 138 | 137 | rspcev 3621 | . . . 4
⊢ (((𝐶 +R
[〈𝑣,
1P〉] ~R ) ∈
R ∧ (∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | 
| 139 | 62, 130, 138 | syl6an 684 | . . 3
⊢ (((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) →
((∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) | 
| 140 | 139 | rexlimdva 3154 | . 2
⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → (∃𝑣 ∈ P
(∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) | 
| 141 | 57, 140 | mpd 15 | 1
⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |