MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsrlem Structured version   Visualization version   GIF version

Theorem supsrlem 11130
Description: Lemma for supremum theorem. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
supsrlem.1 𝐵 = {𝑤 ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
supsrlem.2 𝐶R
Assertion
Ref Expression
supsrlem ((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤   𝑥,𝐶,𝑦,𝑧,𝑤

Proof of Theorem supsrlem
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supsrlem.2 . . . . . . 7 𝐶R
2 0idsr 11116 . . . . . . 7 (𝐶R → (𝐶 +R 0R) = 𝐶)
31, 2mp1i 13 . . . . . 6 ((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → (𝐶 +R 0R) = 𝐶)
4 simpl 482 . . . . . 6 ((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → 𝐶𝐴)
53, 4eqeltrd 2835 . . . . 5 ((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → (𝐶 +R 0R) ∈ 𝐴)
6 1pr 11034 . . . . . . 7 1PP
76elexi 3487 . . . . . 6 1P ∈ V
8 opeq1 4854 . . . . . . . . . 10 (𝑤 = 1P → ⟨𝑤, 1P⟩ = ⟨1P, 1P⟩)
98eceq1d 8764 . . . . . . . . 9 (𝑤 = 1P → [⟨𝑤, 1P⟩] ~R = [⟨1P, 1P⟩] ~R )
10 df-0r 11079 . . . . . . . . 9 0R = [⟨1P, 1P⟩] ~R
119, 10eqtr4di 2789 . . . . . . . 8 (𝑤 = 1P → [⟨𝑤, 1P⟩] ~R = 0R)
1211oveq2d 7426 . . . . . . 7 (𝑤 = 1P → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = (𝐶 +R 0R))
1312eleq1d 2820 . . . . . 6 (𝑤 = 1P → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝐶 +R 0R) ∈ 𝐴))
14 supsrlem.1 . . . . . 6 𝐵 = {𝑤 ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
157, 13, 14elab2 3666 . . . . 5 (1P𝐵 ↔ (𝐶 +R 0R) ∈ 𝐴)
165, 15sylibr 234 . . . 4 ((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → 1P𝐵)
1716ne0d 4322 . . 3 ((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → 𝐵 ≠ ∅)
18 breq1 5127 . . . . . . . 8 (𝑦 = 𝐶 → (𝑦 <R 𝑥𝐶 <R 𝑥))
1918rspccv 3603 . . . . . . 7 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝐶𝐴𝐶 <R 𝑥))
20 0lt1sr 11114 . . . . . . . . . . . . 13 0R <R 1R
21 m1r 11101 . . . . . . . . . . . . . 14 -1RR
22 ltasr 11119 . . . . . . . . . . . . . 14 (-1RR → (0R <R 1R ↔ (-1R +R 0R) <R (-1R +R 1R)))
2321, 22ax-mp 5 . . . . . . . . . . . . 13 (0R <R 1R ↔ (-1R +R 0R) <R (-1R +R 1R))
2420, 23mpbi 230 . . . . . . . . . . . 12 (-1R +R 0R) <R (-1R +R 1R)
25 0idsr 11116 . . . . . . . . . . . . 13 (-1RR → (-1R +R 0R) = -1R)
2621, 25ax-mp 5 . . . . . . . . . . . 12 (-1R +R 0R) = -1R
27 m1p1sr 11111 . . . . . . . . . . . 12 (-1R +R 1R) = 0R
2824, 26, 273brtr3i 5153 . . . . . . . . . . 11 -1R <R 0R
29 ltasr 11119 . . . . . . . . . . . 12 (𝐶R → (-1R <R 0R ↔ (𝐶 +R -1R) <R (𝐶 +R 0R)))
301, 29ax-mp 5 . . . . . . . . . . 11 (-1R <R 0R ↔ (𝐶 +R -1R) <R (𝐶 +R 0R))
3128, 30mpbi 230 . . . . . . . . . 10 (𝐶 +R -1R) <R (𝐶 +R 0R)
321, 2ax-mp 5 . . . . . . . . . 10 (𝐶 +R 0R) = 𝐶
3331, 32breqtri 5149 . . . . . . . . 9 (𝐶 +R -1R) <R 𝐶
34 ltsosr 11113 . . . . . . . . . 10 <R Or R
35 ltrelsr 11087 . . . . . . . . . 10 <R ⊆ (R × R)
3634, 35sotri 6121 . . . . . . . . 9 (((𝐶 +R -1R) <R 𝐶𝐶 <R 𝑥) → (𝐶 +R -1R) <R 𝑥)
3733, 36mpan 690 . . . . . . . 8 (𝐶 <R 𝑥 → (𝐶 +R -1R) <R 𝑥)
381map2psrpr 11129 . . . . . . . 8 ((𝐶 +R -1R) <R 𝑥 ↔ ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥)
3937, 38sylib 218 . . . . . . 7 (𝐶 <R 𝑥 → ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥)
4019, 39syl6 35 . . . . . 6 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝐶𝐴 → ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥))
41 breq2 5128 . . . . . . . . . 10 ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑦 <R 𝑥))
4241ralbidv 3164 . . . . . . . . 9 ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∀𝑦𝐴 𝑦 <R 𝑥))
4314eqabri 2879 . . . . . . . . . . 11 (𝑤𝐵 ↔ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴)
44 breq1 5127 . . . . . . . . . . . . 13 (𝑦 = (𝐶 +R [⟨𝑤, 1P⟩] ~R ) → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
4544rspccv 3603 . . . . . . . . . . . 12 (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
461ltpsrpr 11128 . . . . . . . . . . . 12 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑤<P 𝑣)
4745, 46imbitrdi 251 . . . . . . . . . . 11 (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴𝑤<P 𝑣))
4843, 47biimtrid 242 . . . . . . . . . 10 (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (𝑤𝐵𝑤<P 𝑣))
4948ralrimiv 3132 . . . . . . . . 9 (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∀𝑤𝐵 𝑤<P 𝑣)
5042, 49biimtrrdi 254 . . . . . . . 8 ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → (∀𝑦𝐴 𝑦 <R 𝑥 → ∀𝑤𝐵 𝑤<P 𝑣))
5150com12 32 . . . . . . 7 (∀𝑦𝐴 𝑦 <R 𝑥 → ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → ∀𝑤𝐵 𝑤<P 𝑣))
5251reximdv 3156 . . . . . 6 (∀𝑦𝐴 𝑦 <R 𝑥 → (∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → ∃𝑣P𝑤𝐵 𝑤<P 𝑣))
5340, 52syld 47 . . . . 5 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝐶𝐴 → ∃𝑣P𝑤𝐵 𝑤<P 𝑣))
5453rexlimivw 3138 . . . 4 (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → (𝐶𝐴 → ∃𝑣P𝑤𝐵 𝑤<P 𝑣))
5554impcom 407 . . 3 ((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑣P𝑤𝐵 𝑤<P 𝑣)
56 supexpr 11073 . . 3 ((𝐵 ≠ ∅ ∧ ∃𝑣P𝑤𝐵 𝑤<P 𝑣) → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
5717, 55, 56syl2anc 584 . 2 ((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
581mappsrpr 11127 . . . . . . 7 ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑣P)
5935brel 5724 . . . . . . 7 ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ((𝐶 +R -1R) ∈ R ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ∈ R))
6058, 59sylbir 235 . . . . . 6 (𝑣P → ((𝐶 +R -1R) ∈ R ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ∈ R))
6160simprd 495 . . . . 5 (𝑣P → (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ∈ R)
6261adantl 481 . . . 4 (((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) → (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ∈ R)
6334, 35sotri 6121 . . . . . . . . . . . . . . 15 (((𝐶 +R -1R) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦) → (𝐶 +R -1R) <R 𝑦)
6458, 63sylanbr 582 . . . . . . . . . . . . . 14 ((𝑣P ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦) → (𝐶 +R -1R) <R 𝑦)
651map2psrpr 11129 . . . . . . . . . . . . . 14 ((𝐶 +R -1R) <R 𝑦 ↔ ∃𝑤P (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦)
6664, 65sylib 218 . . . . . . . . . . . . 13 ((𝑣P ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦) → ∃𝑤P (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦)
67 rexex 3067 . . . . . . . . . . . . 13 (∃𝑤P (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → ∃𝑤(𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦)
68 df-ral 3053 . . . . . . . . . . . . . . 15 (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ↔ ∀𝑤(𝑤𝐵 → ¬ 𝑣<P 𝑤))
69 19.29 1873 . . . . . . . . . . . . . . . 16 ((∀𝑤(𝑤𝐵 → ¬ 𝑣<P 𝑤) ∧ ∃𝑤(𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦) → ∃𝑤((𝑤𝐵 → ¬ 𝑣<P 𝑤) ∧ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦))
70 eleq1 2823 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴𝑦𝐴))
7143, 70bitrid 283 . . . . . . . . . . . . . . . . . . 19 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → (𝑤𝐵𝑦𝐴))
721ltpsrpr 11128 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ↔ 𝑣<P 𝑤)
73 breq2 5128 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ↔ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
7472, 73bitr3id 285 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → (𝑣<P 𝑤 ↔ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
7574notbid 318 . . . . . . . . . . . . . . . . . . 19 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → (¬ 𝑣<P 𝑤 ↔ ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
7671, 75imbi12d 344 . . . . . . . . . . . . . . . . . 18 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → ((𝑤𝐵 → ¬ 𝑣<P 𝑤) ↔ (𝑦𝐴 → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦)))
7776biimpac 478 . . . . . . . . . . . . . . . . 17 (((𝑤𝐵 → ¬ 𝑣<P 𝑤) ∧ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦) → (𝑦𝐴 → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
7877exlimiv 1930 . . . . . . . . . . . . . . . 16 (∃𝑤((𝑤𝐵 → ¬ 𝑣<P 𝑤) ∧ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦) → (𝑦𝐴 → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
7969, 78syl 17 . . . . . . . . . . . . . . 15 ((∀𝑤(𝑤𝐵 → ¬ 𝑣<P 𝑤) ∧ ∃𝑤(𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦) → (𝑦𝐴 → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
8068, 79sylanb 581 . . . . . . . . . . . . . 14 ((∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∃𝑤(𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦) → (𝑦𝐴 → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
8180expcom 413 . . . . . . . . . . . . 13 (∃𝑤(𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → (∀𝑤𝐵 ¬ 𝑣<P 𝑤 → (𝑦𝐴 → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦)))
8266, 67, 813syl 18 . . . . . . . . . . . 12 ((𝑣P ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦) → (∀𝑤𝐵 ¬ 𝑣<P 𝑤 → (𝑦𝐴 → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦)))
8382impd 410 . . . . . . . . . . 11 ((𝑣P ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦) → ((∀𝑤𝐵 ¬ 𝑣<P 𝑤𝑦𝐴) → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
8483impancom 451 . . . . . . . . . 10 ((𝑣P ∧ (∀𝑤𝐵 ¬ 𝑣<P 𝑤𝑦𝐴)) → ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦 → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
8584pm2.01d 190 . . . . . . . . 9 ((𝑣P ∧ (∀𝑤𝐵 ¬ 𝑣<P 𝑤𝑦𝐴)) → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦)
8685expr 456 . . . . . . . 8 ((𝑣P ∧ ∀𝑤𝐵 ¬ 𝑣<P 𝑤) → (𝑦𝐴 → ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
8786ralrimiv 3132 . . . . . . 7 ((𝑣P ∧ ∀𝑤𝐵 ¬ 𝑣<P 𝑤) → ∀𝑦𝐴 ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦)
8887ex 412 . . . . . 6 (𝑣P → (∀𝑤𝐵 ¬ 𝑣<P 𝑤 → ∀𝑦𝐴 ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
8988adantl 481 . . . . 5 (((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) → (∀𝑤𝐵 ¬ 𝑣<P 𝑤 → ∀𝑦𝐴 ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
90 r19.29 3102 . . . . . . . . . . . . . 14 ((∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢) ∧ ∃𝑤P (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦) → ∃𝑤P ((𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢) ∧ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦))
91 breq1 5127 . . . . . . . . . . . . . . . . . . 19 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
9246, 91bitr3id 285 . . . . . . . . . . . . . . . . . 18 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → (𝑤<P 𝑣𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
9392biimprd 248 . . . . . . . . . . . . . . . . 17 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → 𝑤<P 𝑣))
94 vex 3468 . . . . . . . . . . . . . . . . . . . . 21 𝑢 ∈ V
95 opeq1 4854 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑢 → ⟨𝑤, 1P⟩ = ⟨𝑢, 1P⟩)
9695eceq1d 8764 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑢 → [⟨𝑤, 1P⟩] ~R = [⟨𝑢, 1P⟩] ~R )
9796oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑢 → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = (𝐶 +R [⟨𝑢, 1P⟩] ~R ))
9897eleq1d 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑢 → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) ∈ 𝐴))
9994, 98, 14elab2 3666 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝐵 ↔ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) ∈ 𝐴)
100 breq2 5128 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R 𝑧 ↔ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑢, 1P⟩] ~R )))
1011ltpsrpr 11128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑢, 1P⟩] ~R ) ↔ 𝑤<P 𝑢)
102100, 101bitrdi 287 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R 𝑧𝑤<P 𝑢))
103102rspcev 3606 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 +R [⟨𝑢, 1P⟩] ~R ) ∈ 𝐴𝑤<P 𝑢) → ∃𝑧𝐴 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R 𝑧)
10499, 103sylanb 581 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝐵𝑤<P 𝑢) → ∃𝑧𝐴 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R 𝑧)
105104rexlimiva 3134 . . . . . . . . . . . . . . . . . 18 (∃𝑢𝐵 𝑤<P 𝑢 → ∃𝑧𝐴 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R 𝑧)
106 breq1 5127 . . . . . . . . . . . . . . . . . . 19 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R 𝑧𝑦 <R 𝑧))
107106rexbidv 3165 . . . . . . . . . . . . . . . . . 18 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → (∃𝑧𝐴 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R 𝑧 ↔ ∃𝑧𝐴 𝑦 <R 𝑧))
108105, 107imbitrid 244 . . . . . . . . . . . . . . . . 17 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → (∃𝑢𝐵 𝑤<P 𝑢 → ∃𝑧𝐴 𝑦 <R 𝑧))
10993, 108imim12d 81 . . . . . . . . . . . . . . . 16 ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦 → ((𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢) → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧)))
110109impcom 407 . . . . . . . . . . . . . . 15 (((𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢) ∧ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦) → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))
111110rexlimivw 3138 . . . . . . . . . . . . . 14 (∃𝑤P ((𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢) ∧ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦) → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))
11290, 111syl 17 . . . . . . . . . . . . 13 ((∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢) ∧ ∃𝑤P (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = 𝑦) → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))
11365, 112sylan2b 594 . . . . . . . . . . . 12 ((∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢) ∧ (𝐶 +R -1R) <R 𝑦) → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))
114113ex 412 . . . . . . . . . . 11 (∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢) → ((𝐶 +R -1R) <R 𝑦 → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧)))
115114adantl 481 . . . . . . . . . 10 (((𝐶𝐴𝑣P) ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)) → ((𝐶 +R -1R) <R 𝑦 → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧)))
116115a1dd 50 . . . . . . . . 9 (((𝐶𝐴𝑣P) ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)) → ((𝐶 +R -1R) <R 𝑦 → (𝑦R → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))))
11734, 35sotri2 6123 . . . . . . . . . . . . 13 ((𝑦R ∧ ¬ (𝐶 +R -1R) <R 𝑦 ∧ (𝐶 +R -1R) <R 𝐶) → 𝑦 <R 𝐶)
11833, 117mp3an3 1452 . . . . . . . . . . . 12 ((𝑦R ∧ ¬ (𝐶 +R -1R) <R 𝑦) → 𝑦 <R 𝐶)
119 breq2 5128 . . . . . . . . . . . . . . 15 (𝑧 = 𝐶 → (𝑦 <R 𝑧𝑦 <R 𝐶))
120119rspcev 3606 . . . . . . . . . . . . . 14 ((𝐶𝐴𝑦 <R 𝐶) → ∃𝑧𝐴 𝑦 <R 𝑧)
121120ex 412 . . . . . . . . . . . . 13 (𝐶𝐴 → (𝑦 <R 𝐶 → ∃𝑧𝐴 𝑦 <R 𝑧))
122121a1dd 50 . . . . . . . . . . . 12 (𝐶𝐴 → (𝑦 <R 𝐶 → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧)))
123118, 122syl5 34 . . . . . . . . . . 11 (𝐶𝐴 → ((𝑦R ∧ ¬ (𝐶 +R -1R) <R 𝑦) → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧)))
124123expcomd 416 . . . . . . . . . 10 (𝐶𝐴 → (¬ (𝐶 +R -1R) <R 𝑦 → (𝑦R → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))))
125124ad2antrr 726 . . . . . . . . 9 (((𝐶𝐴𝑣P) ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)) → (¬ (𝐶 +R -1R) <R 𝑦 → (𝑦R → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))))
126116, 125pm2.61d 179 . . . . . . . 8 (((𝐶𝐴𝑣P) ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)) → (𝑦R → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧)))
127126ralrimiv 3132 . . . . . . 7 (((𝐶𝐴𝑣P) ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)) → ∀𝑦R (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))
128127ex 412 . . . . . 6 ((𝐶𝐴𝑣P) → (∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢) → ∀𝑦R (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧)))
129128adantlr 715 . . . . 5 (((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) → (∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢) → ∀𝑦R (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧)))
13089, 129anim12d 609 . . . 4 (((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) → ((∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)) → (∀𝑦𝐴 ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦 ∧ ∀𝑦R (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))))
131 breq1 5127 . . . . . . . 8 (𝑥 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (𝑥 <R 𝑦 ↔ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
132131notbid 318 . . . . . . 7 (𝑥 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (¬ 𝑥 <R 𝑦 ↔ ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
133132ralbidv 3164 . . . . . 6 (𝑥 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ↔ ∀𝑦𝐴 ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦))
134 breq2 5128 . . . . . . . 8 (𝑥 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (𝑦 <R 𝑥𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
135134imbi1d 341 . . . . . . 7 (𝑥 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ((𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧) ↔ (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧)))
136135ralbidv 3164 . . . . . 6 (𝑥 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧) ↔ ∀𝑦R (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧)))
137133, 136anbi12d 632 . . . . 5 (𝑥 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ((∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)) ↔ (∀𝑦𝐴 ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦 ∧ ∀𝑦R (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))))
138137rspcev 3606 . . . 4 (((𝐶 +R [⟨𝑣, 1P⟩] ~R ) ∈ R ∧ (∀𝑦𝐴 ¬ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) <R 𝑦 ∧ ∀𝑦R (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∃𝑧𝐴 𝑦 <R 𝑧))) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
13962, 130, 138syl6an 684 . . 3 (((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) → ((∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
140139rexlimdva 3142 . 2 ((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → (∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
14157, 140mpd 15 1 ((𝐶𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  c0 4313  cop 4612   class class class wbr 5124  (class class class)co 7410  [cec 8722  Pcnp 10878  1Pc1p 10879  <P cltp 10882   ~R cer 10883  Rcnr 10884  0Rc0r 10885  1Rc1r 10886  -1Rcm1r 10887   +R cplr 10888   <R cltr 10890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-mpq 10928  df-ltpq 10929  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-mq 10934  df-1nq 10935  df-rq 10936  df-ltnq 10937  df-np 11000  df-1p 11001  df-plp 11002  df-mp 11003  df-ltp 11004  df-enr 11074  df-nr 11075  df-plr 11076  df-mr 11077  df-ltr 11078  df-0r 11079  df-1r 11080  df-m1r 11081
This theorem is referenced by:  supsr  11131
  Copyright terms: Public domain W3C validator