MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdeqi Structured version   Visualization version   GIF version

Theorem cdeqi 3695
Description: Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqi.1 (𝑥 = 𝑦𝜑)
Assertion
Ref Expression
cdeqi CondEq(𝑥 = 𝑦𝜑)

Proof of Theorem cdeqi
StepHypRef Expression
1 cdeqi.1 . 2 (𝑥 = 𝑦𝜑)
2 df-cdeq 3694 . 2 (CondEq(𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜑))
31, 2mpbir 230 1 CondEq(𝑥 = 𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  CondEqwcdeq 3693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-cdeq 3694
This theorem is referenced by:  cdeqth  3697  cdeqnot  3698  cdeqal  3699  cdeqab  3700  cdeqim  3703  cdeqcv  3704  cdeqeq  3705  cdeqel  3706
  Copyright terms: Public domain W3C validator