MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdeqth Structured version   Visualization version   GIF version

Theorem cdeqth 3702
Description: Deduce conditional equality from a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqth.1 𝜑
Assertion
Ref Expression
cdeqth CondEq(𝑥 = 𝑦𝜑)

Proof of Theorem cdeqth
StepHypRef Expression
1 cdeqth.1 . . 3 𝜑
21a1i 11 . 2 (𝑥 = 𝑦𝜑)
32cdeqi 3700 1 CondEq(𝑥 = 𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  CondEqwcdeq 3698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-cdeq 3699
This theorem is referenced by:  cdeqal1  3706  cdeqab1  3707  nfccdeq  3713
  Copyright terms: Public domain W3C validator