MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdeqeq Structured version   Visualization version   GIF version

Theorem cdeqeq 3705
Description: Distribute conditional equality over equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
cdeqeq.1 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
cdeqeq.2 CondEq(𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
cdeqeq CondEq(𝑥 = 𝑦 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem cdeqeq
StepHypRef Expression
1 cdeqeq.1 . . . 4 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
21cdeqri 3696 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
3 cdeqeq.2 . . . 4 CondEq(𝑥 = 𝑦𝐶 = 𝐷)
43cdeqri 3696 . . 3 (𝑥 = 𝑦𝐶 = 𝐷)
52, 4eqeq12d 2754 . 2 (𝑥 = 𝑦 → (𝐴 = 𝐶𝐵 = 𝐷))
65cdeqi 3695 1 CondEq(𝑥 = 𝑦 → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  CondEqwcdeq 3693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-cdeq 3694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator