Home | Metamath
Proof Explorer Theorem List (p. 38 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cdeqi 3701 | Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ CondEq(𝑥 = 𝑦 → 𝜑) | ||
Theorem | cdeqri 3702 | Property of conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (𝑥 = 𝑦 → 𝜑) | ||
Theorem | cdeqth 3703 | Deduce conditional equality from a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ 𝜑 ⇒ ⊢ CondEq(𝑥 = 𝑦 → 𝜑) | ||
Theorem | cdeqnot 3704 | Distribute conditional equality over negation. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) | ||
Theorem | cdeqal 3705* | Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
Theorem | cdeqab 3706* | Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → {𝑧 ∣ 𝜑} = {𝑧 ∣ 𝜓}) | ||
Theorem | cdeqal1 3707* | Distribute conditional equality over quantification. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | cdeqab1 3708* | Distribute conditional equality over abstraction. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}) | ||
Theorem | cdeqim 3709 | Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ CondEq(𝑥 = 𝑦 → (𝜒 ↔ 𝜃)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) | ||
Theorem | cdeqcv 3710 | Conditional equality for set-to-class promotion. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → 𝑥 = 𝑦) | ||
Theorem | cdeqeq 3711 | Distribute conditional equality over equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ CondEq(𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
Theorem | cdeqel 3712 | Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ CondEq(𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | nfcdeq 3713* | If we have a conditional equality proof, where 𝜑 is 𝜑(𝑥) and 𝜓 is 𝜑(𝑦), and 𝜑(𝑥) in fact does not have 𝑥 free in it according to Ⅎ, then 𝜑(𝑥) ↔ 𝜑(𝑦) unconditionally. This proves that Ⅎ𝑥𝜑 is actually a not-free predicate. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | nfccdeq 3714* | Variation of nfcdeq 3713 for classes. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-11 2155. (Revised by Gino Giotto, 19-May-2023.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | rru 3715* |
Relative version of Russell's paradox ru 3716 (which corresponds to the
case 𝐴 = V).
Originally a subproof in pwnss 5273. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid df-nel 3051. (Revised by Steven Nguyen, 23-Nov-2022.) Reduce axiom usage. (Revised by Gino Giotto, 30-Aug-2024.) |
⊢ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 | ||
Theorem | ru 3716 |
Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.
In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥 ∣ 𝑥 ∉ 𝑥} (the "Russell class") for 𝐴, it asserted {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system, which Frege acknowledged in the second edition of his Grundgesetze der Arithmetik. In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom ssex 5246 asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. However, Zermelo was then faced with a "chicken and egg" problem of how to show 𝐵 is a set, leading him to introduce the set-building axioms of Null Set 0ex 5232, Pairing prex 5356, Union uniex 7603, Power Set pwex 5304, and Infinity omex 9410 to give him some starting sets to work with (all of which, before Russell's Paradox, were immediate consequences of Frege's Comprehension). In 1922 Fraenkel strengthened the Subset Axiom with our present Replacement Axiom funimaex 6529 (whose modern formalization is due to Skolem, also in 1922). Thus, in a very real sense Russell's Paradox spawned the invention of ZF set theory and completely revised the foundations of mathematics! Another mainstream formalization of set theory, devised by von Neumann, Bernays, and Goedel, uses class variables rather than setvar variables as its primitives. The axiom system NBG in [Mendelson] p. 225 is suitable for a Metamath encoding. NBG is a conservative extension of ZF in that it proves exactly the same theorems as ZF that are expressible in the language of ZF. An advantage of NBG is that it is finitely axiomatizable - the Axiom of Replacement can be broken down into a finite set of formulas that eliminate its wff metavariable. Finite axiomatizability is required by some proof languages (although not by Metamath). There is a stronger version of NBG called Morse-Kelley (axiom system MK in [Mendelson] p. 287). Russell himself continued in a different direction, avoiding the paradox with his "theory of types". Quine extended Russell's ideas to formulate his New Foundations set theory (axiom system NF of [Quine] p. 331). In NF, the collection of all sets is a set, contrarily to ZF and NBG set theories. Russell's paradox has other consequences: when classes are too large (beyond the size of those used in standard mathematics), the axiom of choice ac4 10240 and Cantor's theorem canth 7238 are provably false. (See ncanth 7239 for some intuition behind the latter.) Recent results (as of 2014) seem to show that NF is equiconsistent to Z (ZF in which ax-sep 5224 replaces ax-rep 5210) with ax-sep 5224 restricted to only bounded quantifiers. NF is finitely axiomatizable and can be encoded in Metamath using the axioms from T. Hailperin, "A set of axioms for logic", J. Symb. Logic 9:1-19 (1944). Under our ZF set theory, every set is a member of the Russell class by elirrv 9364 (derived from the Axiom of Regularity), so for us the Russell class equals the universe V (Theorem ruv 9370). See ruALT 9371 for an alternate proof of ru 3716 derived from that fact. (Contributed by NM, 7-Aug-1994.) Remove use of ax-13 2373. (Revised by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
Syntax | wsbc 3717 | Extend wff notation to include the proper substitution of a class for a set. Read this notation as "the proper substitution of class 𝐴 for setvar variable 𝑥 in wff 𝜑". |
wff [𝐴 / 𝑥]𝜑 | ||
Definition | df-sbc 3718 |
Define the proper substitution of a class for a set.
When 𝐴 is a proper class, our definition evaluates to false (see sbcex 3727). This is somewhat arbitrary: we could have, instead, chosen the conclusion of sbc6 3749 for our definition, whose right-hand side always evaluates to true for proper classes. Our definition also does not produce the same results as discussed in the proof of Theorem 6.6 of [Quine] p. 42 (although Theorem 6.6 itself does hold, as shown by dfsbcq 3719 below). For example, if 𝐴 is a proper class, Quine's substitution of 𝐴 for 𝑦 in 0 ∈ 𝑦 evaluates to 0 ∈ 𝐴 rather than our falsehood. (This can be seen by substituting 𝐴, 𝑦, and 0 for alpha, beta, and gamma in Subcase 1 of Quine's discussion on p. 42.) Unfortunately, Quine's definition requires a recursive syntactic breakdown of 𝜑, and it does not seem possible to express it with a single closed formula. If we did not want to commit to any specific proper class behavior, we could use this definition only to prove Theorem dfsbcq 3719, which holds for both our definition and Quine's, and from which we can derive a weaker version of df-sbc 3718 in the form of sbc8g 3725. However, the behavior of Quine's definition at proper classes is similarly arbitrary, and for practical reasons (to avoid having to prove sethood of 𝐴 in every use of this definition) we allow direct reference to df-sbc 3718 and assert that [𝐴 / 𝑥]𝜑 is always false when 𝐴 is a proper class. Theorem sbc2or 3726 shows the apparently "strongest" statement we can make regarding behavior at proper classes if we start from dfsbcq 3719. The related definition df-csb 3834 defines proper substitution into a class variable (as opposed to a wff variable). (Contributed by NM, 14-Apr-1995.) (Revised by NM, 25-Dec-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | ||
Theorem | dfsbcq 3719 |
Proper substitution of a class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3718 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3720 instead of df-sbc 3718. (dfsbcq2 3720 is needed because unlike Quine we do not overload the df-sb 2069 syntax.) As a consequence of these theorems, we can derive sbc8g 3725, which is a weaker version of df-sbc 3718 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3725, so we will allow direct use of df-sbc 3718 after Theorem sbc2or 3726 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | ||
Theorem | dfsbcq2 3720 | This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2069 and substitution for class variables df-sbc 3718. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3719. (Contributed by NM, 31-Dec-2016.) |
⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbsbc 3721 | Show that df-sb 2069 and df-sbc 3718 are equivalent when the class term 𝐴 in df-sbc 3718 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2069 for proofs involving df-sbc 3718. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | sbceq1d 3722 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | ||
Theorem | sbceq1dd 3723 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) | ||
Theorem | sbceqbid 3724* | Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) | ||
Theorem | sbc8g 3725 | This is the closest we can get to df-sbc 3718 if we start from dfsbcq 3719 (see its comments) and dfsbcq2 3720. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | ||
Theorem | sbc2or 3726* | The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [𝐴 / 𝑥]𝜑 behavior at proper classes, matching the sbc5 3745 (false) and sbc6 3749 (true) conclusions. This is interesting since dfsbcq 3719 and dfsbcq2 3720 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem does not tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable 𝑦 that 𝜑 or 𝐴 may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.) |
⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
Theorem | sbcex 3727 | By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | ||
Theorem | sbceq1a 3728 | Equality theorem for class substitution. Class version of sbequ12 2245. (Contributed by NM, 26-Sep-2003.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbceq2a 3729 | Equality theorem for class substitution. Class version of sbequ12r 2246. (Contributed by NM, 4-Jan-2017.) |
⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | spsbc 3730 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. This is Frege's ninth axiom per Proposition 58 of [Frege1879] p. 51. See also stdpc4 2072 and rspsbc 3813. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | ||
Theorem | spsbcd 3731 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2072 and rspsbc 3813. (Contributed by Mario Carneiro, 9-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | ||
Theorem | sbcth 3732 | A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcthdv 3733* | Deduction version of sbcth 3732. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜓) | ||
Theorem | sbcid 3734 | An identity theorem for substitution. See sbid 2249. (Contributed by Mario Carneiro, 18-Feb-2017.) |
⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | nfsbc1d 3735 | Deduction version of nfsbc1 3736. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) | ||
Theorem | nfsbc1 3736 | Bound-variable hypothesis builder for class substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
Theorem | nfsbc1v 3737* | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
Theorem | nfsbcdw 3738* | Deduction version of nfsbcw 3739. Version of nfsbcd 3741 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
Theorem | nfsbcw 3739* | Bound-variable hypothesis builder for class substitution. Version of nfsbc 3742 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 7-Sep-2014.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 | ||
Theorem | sbccow 3740* | A composition law for class substitution. Version of sbcco 3743 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 26-Sep-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | nfsbcd 3741 | Deduction version of nfsbc 3742. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker nfsbcdw 3738 when possible. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
Theorem | nfsbc 3742 | Bound-variable hypothesis builder for class substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker nfsbcw 3739 when possible. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 | ||
Theorem | sbcco 3743* | A composition law for class substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker sbccow 3740 when possible. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) (New usage is discouraged.) |
⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcco2 3744* | A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbc5 3745* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by SN, 2-Sep-2024.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | sbc5ALT 3746* | Alternate proof of sbc5 3745. This proof helps show how clelab 2884 works, since it is equivalent but shorter thanks to now-available library theorems like vtoclbg 3508 and isset 3446. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | sbc6g 3747* | An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by SN, 5-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
Theorem | sbc6gOLD 3748* | Obsolete version of sbc6g 3747 as of 5-Oct-2024. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
Theorem | sbc6 3749* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) | ||
Theorem | sbc7 3750* | An equivalence for class substitution in the spirit of df-clab 2717. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | cbvsbcw 3751* | Change bound variables in a wff substitution. Version of cbvsbc 3753 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by Jeff Hankins, 19-Sep-2009.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | cbvsbcvw 3752* | Change the bound variable of a class substitution using implicit substitution. Version of cbvsbcv 3754 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 30-Sep-2008.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | cbvsbc 3753 | Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker cbvsbcw 3751 when possible. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | cbvsbcv 3754* | Change the bound variable of a class substitution using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker cbvsbcvw 3752 when possible. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | sbciegft 3755* | Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3756.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbciegf 3756* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbcieg 3757* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) Avoid ax-10 2138, ax-12 2172. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbciegOLD 3758* | Obsolete version of sbcieg 3757 as of 12-Oct-2024. (Contributed by NM, 10-Nov-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbcie2g 3759* | Conversion of implicit substitution to explicit class substitution. This version of sbcie 3760 avoids a disjointness condition on 𝑥, 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) | ||
Theorem | sbcie 3760* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | sbciedf 3761* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbcied 3762* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2138, ax-12 2172. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbciedOLD 3763* | Obsolete version of sbcied 3762 as of 12-Oct-2024. (Contributed by NM, 13-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbcied2 3764* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | elrabsf 3765 | Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 3621 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) | ||
Theorem | eqsbc1 3766* | Substitution for the left-hand side in an equality. Class version of eqsb1 2866. (Contributed by Andrew Salmon, 29-Jun-2011.) Avoid ax-13 2373. (Revised by Wolf Lammen, 29-Apr-2023.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | sbcng 3767 | Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcimg 3768 | Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcan 3769 | Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcor 3770 | Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbig 3771 | Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcn1 3772 | Move negation in and out of class substitution. One direction of sbcng 3767 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcim1 3773 | Distribution of class substitution over implication. One direction of sbcimg 3768 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) Avoid ax-10 2138, ax-12 2172. (Revised by SN, 26-Oct-2024.) |
⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcim1OLD 3774 | Obsolete version of sbcim1 3773 as of 26-Oct-2024. (Contributed by NM, 17-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbid 3775 | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcbidv 3776* | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2172. (Revised by Gino Giotto, 1-Dec-2023.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcbii 3777 | Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) | ||
Theorem | sbcbi1 3778 | Distribution of class substitution over biconditional. One direction of sbcbig 3771 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbi2 3779 | Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof shortened by Wolf Lammen, 4-May-2023.) Avoid ax-10, ax-12. (Revised by Steven Nguyen, 5-May-2024.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbi2OLD 3780 | Obsolete proof of sbcbi2 3779 as of 5-May-2024. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof shortened by Wolf Lammen, 4-May-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcal 3781* | Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 18-Aug-2018.) |
⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) | ||
Theorem | sbcex2 3782* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) (Revised by NM, 18-Aug-2018.) |
⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) | ||
Theorem | sbceqal 3783* | Class version of one implication of equvelv 2035. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by SN, 26-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
Theorem | sbceqalOLD 3784* | Obsolete version of sbceqal 3783 as of 26-Oct-2024. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
Theorem | sbeqalb 3785* | Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) | ||
Theorem | eqsbc2 3786* | Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) | ||
Theorem | sbc3an 3787 | Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcel1v 3788* | Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2373. (Revised by Wolf Lammen, 30-Apr-2023.) |
⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
Theorem | sbcel2gv 3789* | Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | sbcel21v 3790* | Class substitution into a membership relation. One direction of sbcel2gv 3789 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵) | ||
Theorem | sbcimdv 3791* | Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1813). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcimdvOLD 3792* | Obsolete version of sbcimdv 3791 as of 12-Oct-2024. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbctt 3793 | Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbcgf 3794 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbc19.21g 3795 | Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcg 3796* | Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3794. (Contributed by Alan Sare, 10-Nov-2012.) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbcgOLD 3797* | Obsolete version of sbcg 3796 as of 12-Oct-2024. (Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbcgfi 3798 | Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbc2iegf 3799* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | ||
Theorem | sbc2ie 3800* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Gino Giotto, 12-Oct-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |