Home Metamath Proof ExplorerTheorem List (p. 38 of 453) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-28707) Hilbert Space Explorer (28708-30230) Users' Mathboxes (30231-45263)

Theorem List for Metamath Proof Explorer - 3701-3800   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremeuind 3701* Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010.)
𝐵 ∈ V    &   (𝑥 = 𝑦 → (𝜑𝜓))       ((∀𝑥𝑦((𝜑𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∃!𝑧𝑥(𝜑𝑧 = 𝐴))

Theoremreu2 3702* A way to express restricted uniqueness. (Contributed by NM, 22-Nov-1994.)
(∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))

Theoremreu6 3703* A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.)
(∃!𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))

Theoremreu3 3704* A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.)
(∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)))

Theoremreu6i 3705* A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)

Theoremeqreu 3706* A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
(𝑥 = 𝐵 → (𝜑𝜓))       ((𝐵𝐴𝜓 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)

Theoremrmo4 3707* Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))

Theoremreu4 3708* Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))

Theoremreu7 3709* Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴𝑦𝐴 (𝜓𝑥 = 𝑦)))

Theoremreu8 3710* Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))

Theoremrmo3f 3711* Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑       (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))

Theoremrmo4f 3712* Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by Thierry Arnoux, 11-Oct-2016.) (Revised by Thierry Arnoux, 8-Mar-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
𝑥𝐴    &   𝑦𝐴    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))

Theoremreu2eqd 3713* Deduce equality from restricted uniqueness, deduction version. (Contributed by Thierry Arnoux, 27-Nov-2019.)
(𝑥 = 𝐵 → (𝜓𝜒))    &   (𝑥 = 𝐶 → (𝜓𝜃))    &   (𝜑 → ∃!𝑥𝐴 𝜓)    &   (𝜑𝐵𝐴)    &   (𝜑𝐶𝐴)    &   (𝜑𝜒)    &   (𝜑𝜃)       (𝜑𝐵 = 𝐶)

Theoremreueq 3714* Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.)
(𝐵𝐴 ↔ ∃!𝑥𝐴 𝑥 = 𝐵)

Theoremrmoeq 3715* Equality's restricted existential "at most one" property. (Contributed by Thierry Arnoux, 30-Mar-2018.) (Revised by AV, 27-Oct-2020.) (Proof shortened by NM, 29-Oct-2020.)
∃*𝑥𝐵 𝑥 = 𝐴

Theoremrmoan 3716 Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.)
(∃*𝑥𝐴 𝜑 → ∃*𝑥𝐴 (𝜓𝜑))

Theoremrmoim 3717 Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(∀𝑥𝐴 (𝜑𝜓) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))

Theoremrmoimia 3718 Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(𝑥𝐴 → (𝜑𝜓))       (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑)

Theoremrmoimi 3719 Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(𝜑𝜓)       (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑)

Theoremrmoimi2 3720 Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓))       (∃*𝑥𝐵 𝜓 → ∃*𝑥𝐴 𝜑)

Theorem2reu5a 3721 Double restricted existential uniqueness in terms of restricted existence and restricted "at most one." (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ (∃𝑥𝐴 (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑) ∧ ∃*𝑥𝐴 (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑)))

Theoremreuimrmo 3722 Restricted uniqueness implies restricted "at most one" through implication, analogous to euimmo 2703. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
(∀𝑥𝐴 (𝜑𝜓) → (∃!𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))

Theorem2reuswap 3723* A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.)
(∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑦𝐵𝑥𝐴 𝜑))

Theorem2reuswap2 3724* A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.)
(∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑦𝐵𝑥𝐴 𝜑))

Theoremreuxfrd 3725* Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 16-Jan-2012.) Separate variables B and C. (Revised by Thierry Arnoux, 8-Oct-2017.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃*𝑦𝐶 𝑥 = 𝐴)       (𝜑 → (∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜓) ↔ ∃!𝑦𝐶 𝜓))

Theoremreuxfr 3726* Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by NM, 16-Jun-2017.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃*𝑦𝐶 𝑥 = 𝐴)       (∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝐶 𝜑)

Theoremreuxfr1d 3727* Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Cf. reuxfr1ds 3728. (Contributed by Thierry Arnoux, 7-Apr-2017.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))

Theoremreuxfr1ds 3728* Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhypd 5307 to eliminate the second hypothesis. (Contributed by NM, 16-Jan-2012.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))

Theoremreuxfr1 3729* Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhyp 5308 to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃!𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃!𝑥𝐵 𝜑 ↔ ∃!𝑦𝐶 𝜓)

Theoremreuind 3730* Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑥 = 𝑦𝐴 = 𝐵)       ((∀𝑥𝑦(((𝐴𝐶𝜑) ∧ (𝐵𝐶𝜓)) → 𝐴 = 𝐵) ∧ ∃𝑥(𝐴𝐶𝜑)) → ∃!𝑧𝐶𝑥((𝐴𝐶𝜑) → 𝑧 = 𝐴))

Theorem2rmorex 3731* Double restricted quantification with "at most one", analogous to 2moex 2728. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(∃*𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵 ∃*𝑥𝐴 𝜑)

Theorem2reu5lem1 3732* Lemma for 2reu5 3735. Note that ∃!𝑥𝐴∃!𝑦𝐵𝜑 does not mean "there is exactly one 𝑥 in 𝐴 and exactly one 𝑦 in 𝐵 such that 𝜑 holds"; see comment for 2eu5 2743. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥∃!𝑦(𝑥𝐴𝑦𝐵𝜑))

Theorem2reu5lem2 3733* Lemma for 2reu5 3735. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(∀𝑥𝐴 ∃*𝑦𝐵 𝜑 ↔ ∀𝑥∃*𝑦(𝑥𝐴𝑦𝐵𝜑))

Theorem2reu5lem3 3734* Lemma for 2reu5 3735. This lemma is interesting in its own right, showing that existential restriction in the last conjunct (the "at most one" part) is optional; compare rmo2 3854. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
((∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∀𝑥𝐴 ∃*𝑦𝐵 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝑤𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))

Theorem2reu5 3735* Double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification, analogous to 2eu5 2743 and reu3 3704. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
((∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∀𝑥𝐴 ∃*𝑦𝐵 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))

Theorem2reurex 3736* Double restricted quantification with existential uniqueness, analogous to 2euex 2729. (Contributed by Alexander van der Vekens, 24-Jun-2017.)
(∃!𝑥𝐴𝑦𝐵 𝜑 → ∃𝑦𝐵 ∃!𝑥𝐴 𝜑)

Theorem2reurmo 3737* Double restricted quantification with restricted existential uniqueness and restricted "at most one", analogous to 2eumo 2730. (Contributed by Alexander van der Vekens, 24-Jun-2017.)
(∃!𝑥𝐴 ∃*𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑)

Theorem2rmoswap 3738* A condition allowing to swap restricted "at most one" and restricted existential quantifiers, analogous to 2moswap 2732. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
(∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑦𝐵𝑥𝐴 𝜑))

Theorem2rexreu 3739* Double restricted existential uniqueness implies double restricted unique existential quantification, analogous to 2exeu 2734. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → ∃!𝑥𝐴 ∃!𝑦𝐵 𝜑)

2.1.7  Conditional equality (experimental)

This is a very useless definition, which "abbreviates" (𝑥 = 𝑦𝜑) as CondEq(𝑥 = 𝑦𝜑). What this display hides, though, is that the first expression, even though it has a shorter constant string, is actually much more complicated in its parse tree: it is parsed as (wi (wceq (cv vx) (cv vy)) wph), while the CondEq version is parsed as (wcdeq vx vy wph). It also allows us to give a name to the specific ternary operation (𝑥 = 𝑦𝜑).

This is all used as part of a metatheorem: we want to say that (𝑥 = 𝑦 → (𝜑(𝑥) ↔ 𝜑(𝑦))) and (𝑥 = 𝑦𝐴(𝑥) = 𝐴(𝑦)) are provable, for any expressions 𝜑(𝑥) or 𝐴(𝑥) in the language. The proof is by induction, so the base case is each of the primitives, which is why you will see a theorem for each of the set.mm primitive operations.

The metatheorem comes with a disjoint variables assumption: every variable in 𝜑(𝑥) is assumed disjoint from 𝑥 except 𝑥 itself. For such a proof by induction, we must consider each of the possible forms of 𝜑(𝑥). If it is a variable other than 𝑥, then we have CondEq(𝑥 = 𝑦𝐴 = 𝐴) or CondEq(𝑥 = 𝑦 → (𝜑𝜑)), which is provable by cdeqth 3744 and reflexivity. Since we are only working with class and wff expressions, it can't be 𝑥 itself in set.mm, but if it was we'd have to also prove CondEq(𝑥 = 𝑦𝑥 = 𝑦) (where set equality is being used on the right).

Otherwise, it is a primitive operation applied to smaller expressions. In these cases, for each setvar variable parameter to the operation, we must consider if it is equal to 𝑥 or not, which yields 2^n proof obligations. Luckily, all primitive operations in set.mm have either zero or one setvar variable, so we only need to prove one statement for the non-set constructors (like implication) and two for the constructors taking a set (the universal quantifier and the class builder).

In each of the primitive proofs, we are allowed to assume that 𝑦 is disjoint from 𝜑(𝑥) and vice versa, because this is maintained through the induction. This is how we satisfy the disjoint variable conditions of cdeqab1 3749 and cdeqab 3747.

Syntaxwcdeq 3740 Extend wff notation to include conditional equality. This is a technical device used in the proof that is the not-free predicate, and that definitions are conservative as a result.
wff CondEq(𝑥 = 𝑦𝜑)

Definitiondf-cdeq 3741 Define conditional equality. All the notation to the left of the is fake; the parentheses and arrows are all part of the notation, which could equally well be written CondEq𝑥𝑦𝜑. On the right side is the actual implication arrow. The reason for this definition is to "flatten" the structure on the right side (whose tree structure is something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy wph). (Contributed by Mario Carneiro, 11-Aug-2016.)
(CondEq(𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜑))

Theoremcdeqi 3742 Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝑥 = 𝑦𝜑)       CondEq(𝑥 = 𝑦𝜑)

Theoremcdeqri 3743 Property of conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦𝜑)       (𝑥 = 𝑦𝜑)

Theoremcdeqth 3744 Deduce conditional equality from a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝜑       CondEq(𝑥 = 𝑦𝜑)

Theoremcdeqnot 3745 Distribute conditional equality over negation. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦 → (𝜑𝜓))       CondEq(𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))

Theoremcdeqal 3746* Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦 → (𝜑𝜓))       CondEq(𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))

Theoremcdeqab 3747* Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦 → (𝜑𝜓))       CondEq(𝑥 = 𝑦 → {𝑧𝜑} = {𝑧𝜓})

Theoremcdeqal1 3748* Distribute conditional equality over quantification. Usage of this theorem is discouraged because it depends on ax-13 2392. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
CondEq(𝑥 = 𝑦 → (𝜑𝜓))       CondEq(𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))

Theoremcdeqab1 3749* Distribute conditional equality over abstraction. Usage of this theorem is discouraged because it depends on ax-13 2392. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
CondEq(𝑥 = 𝑦 → (𝜑𝜓))       CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})

Theoremcdeqim 3750 Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦 → (𝜑𝜓))    &   CondEq(𝑥 = 𝑦 → (𝜒𝜃))       CondEq(𝑥 = 𝑦 → ((𝜑𝜒) ↔ (𝜓𝜃)))

Theoremcdeqcv 3751 Conditional equality for set-to-class promotion. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦𝑥 = 𝑦)

Theoremcdeqeq 3752 Distribute conditional equality over equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦𝐴 = 𝐵)    &   CondEq(𝑥 = 𝑦𝐶 = 𝐷)       CondEq(𝑥 = 𝑦 → (𝐴 = 𝐶𝐵 = 𝐷))

Theoremcdeqel 3753 Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦𝐴 = 𝐵)    &   CondEq(𝑥 = 𝑦𝐶 = 𝐷)       CondEq(𝑥 = 𝑦 → (𝐴𝐶𝐵𝐷))

Theoremnfcdeq 3754* If we have a conditional equality proof, where 𝜑 is 𝜑(𝑥) and 𝜓 is 𝜑(𝑦), and 𝜑(𝑥) in fact does not have 𝑥 free in it according to , then 𝜑(𝑥) ↔ 𝜑(𝑦) unconditionally. This proves that 𝑥𝜑 is actually a not-free predicate. Usage of this theorem is discouraged because it depends on ax-13 2392. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
𝑥𝜑    &   CondEq(𝑥 = 𝑦 → (𝜑𝜓))       (𝜑𝜓)

Theoremnfccdeq 3755* Variation of nfcdeq 3754 for classes. Usage of this theorem is discouraged because it depends on ax-13 2392. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-11 2162. (Revised by Gino Giotto, 19-May-2023.) (New usage is discouraged.)
𝑥𝐴    &   CondEq(𝑥 = 𝑦𝐴 = 𝐵)       𝐴 = 𝐵

Theoremrru 3756* Relative version of Russell's paradox ru 3757 (which corresponds to the case 𝐴 = V).

Originally a subproof in pwnss 5237. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid df-nel 3119. (Revised by Steven Nguyen, 23-Nov-2022.)

¬ {𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝐴

Theoremru 3757 Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥𝑥𝑥} (the "Russell class") for 𝐴, it asserted {𝑥𝑥𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥𝑥𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system, which Frege acknowledged in the second edition of his Grundgesetze der Arithmetik.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom ssex 5211 asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. However, Zermelo was then faced with a "chicken and egg" problem of how to show 𝐵 is a set, leading him to introduce the set-building axioms of Null Set 0ex 5197, Pairing prex 5320, Union uniex 7461, Power Set pwex 5268, and Infinity omex 9103 to give him some starting sets to work with (all of which, before Russell's Paradox, were immediate consequences of Frege's Comprehension). In 1922 Fraenkel strengthened the Subset Axiom with our present Replacement Axiom funimaex 6429 (whose modern formalization is due to Skolem, also in 1922). Thus, in a very real sense Russell's Paradox spawned the invention of ZF set theory and completely revised the foundations of mathematics!

Another mainstream formalization of set theory, devised by von Neumann, Bernays, and Goedel, uses class variables rather than setvar variables as its primitives. The axiom system NBG in [Mendelson] p. 225 is suitable for a Metamath encoding. NBG is a conservative extension of ZF in that it proves exactly the same theorems as ZF that are expressible in the language of ZF. An advantage of NBG is that it is finitely axiomatizable - the Axiom of Replacement can be broken down into a finite set of formulas that eliminate its wff metavariable. Finite axiomatizability is required by some proof languages (although not by Metamath). There is a stronger version of NBG called Morse-Kelley (axiom system MK in [Mendelson] p. 287).

Russell himself continued in a different direction, avoiding the paradox with his "theory of types". Quine extended Russell's ideas to formulate his New Foundations set theory (axiom system NF of [Quine] p. 331). In NF, the collection of all sets is a set, contrarily to ZF and NBG set theories. Russell's paradox has other consequences: when classes are too large (beyond the size of those used in standard mathematics), the axiom of choice ac4 9895 and Cantor's theorem canth 7104 are provably false. (See ncanth 7105 for some intuition behind the latter.) Recent results (as of 2014) seem to show that NF is equiconsistent to Z (ZF in which ax-sep 5189 replaces ax-rep 5176) with ax-sep 5189 restricted to only bounded quantifiers. NF is finitely axiomatizable and can be encoded in Metamath using the axioms from T. Hailperin, "A set of axioms for logic", J. Symb. Logic 9:1-19 (1944).

Under our ZF set theory, every set is a member of the Russell class by elirrv 9057 (derived from the Axiom of Regularity), so for us the Russell class equals the universe V (Theorem ruv 9063). See ruALT 9064 for an alternate proof of ru 3757 derived from that fact. (Contributed by NM, 7-Aug-1994.) Remove use of ax-13 2392. (Revised by BJ, 12-Oct-2019.) (Proof modification is discouraged.)

{𝑥𝑥𝑥} ∉ V

2.1.9  Proper substitution of classes for sets

Syntaxwsbc 3758 Extend wff notation to include the proper substitution of a class for a set. Read this notation as "the proper substitution of class 𝐴 for setvar variable 𝑥 in wff 𝜑".
wff [𝐴 / 𝑥]𝜑

Definitiondf-sbc 3759 Define the proper substitution of a class for a set.

When 𝐴 is a proper class, our definition evaluates to false (see sbcex 3768). This is somewhat arbitrary: we could have, instead, chosen the conclusion of sbc6 3788 for our definition, whose right-hand side always evaluates to true for proper classes.

Our definition also does not produce the same results as discussed in the proof of Theorem 6.6 of [Quine] p. 42 (although Theorem 6.6 itself does hold, as shown by dfsbcq 3760 below). For example, if 𝐴 is a proper class, Quine's substitution of 𝐴 for 𝑦 in 0 ∈ 𝑦 evaluates to 0 ∈ 𝐴 rather than our falsehood. (This can be seen by substituting 𝐴, 𝑦, and 0 for alpha, beta, and gamma in Subcase 1 of Quine's discussion on p. 42.) Unfortunately, Quine's definition requires a recursive syntactic breakdown of 𝜑, and it does not seem possible to express it with a single closed formula.

If we did not want to commit to any specific proper class behavior, we could use this definition only to prove theorem dfsbcq 3760, which holds for both our definition and Quine's, and from which we can derive a weaker version of df-sbc 3759 in the form of sbc8g 3766. However, the behavior of Quine's definition at proper classes is similarly arbitrary, and for practical reasons (to avoid having to prove sethood of 𝐴 in every use of this definition) we allow direct reference to df-sbc 3759 and assert that [𝐴 / 𝑥]𝜑 is always false when 𝐴 is a proper class.

The theorem sbc2or 3767 shows the apparently "strongest" statement we can make regarding behavior at proper classes if we start from dfsbcq 3760.

The related definition df-csb 3867 defines proper substitution into a class variable (as opposed to a wff variable). (Contributed by NM, 14-Apr-1995.) (Revised by NM, 25-Dec-2016.)

([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})

Theoremdfsbcq 3760 Proper substitution of a class for a set in a wff given equal classes. This is the essence of the sixth axiom of Frege, specifically Proposition 52 of [Frege1879] p. 50.

This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3759 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3761 instead of df-sbc 3759. (dfsbcq2 3761 is needed because unlike Quine we do not overload the df-sb 2071 syntax.) As a consequence of these theorems, we can derive sbc8g 3766, which is a weaker version of df-sbc 3759 that leaves substitution undefined when 𝐴 is a proper class.

However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3766, so we will allow direct use of df-sbc 3759 after theorem sbc2or 3767 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.)

(𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑))

Theoremdfsbcq2 3761 This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2071 and substitution for class variables df-sbc 3759. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3760. (Contributed by NM, 31-Dec-2016.)
(𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))

Theoremsbsbc 3762 Show that df-sb 2071 and df-sbc 3759 are equivalent when the class term 𝐴 in df-sbc 3759 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2071 for proofs involving df-sbc 3759. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.)
([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)

Theoremsbceq1d 3763 Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
(𝜑𝐴 = 𝐵)       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜓))

Theoremsbceq1dd 3764 Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
(𝜑𝐴 = 𝐵)    &   (𝜑[𝐴 / 𝑥]𝜓)       (𝜑[𝐵 / 𝑥]𝜓)

Theoremsbceqbid 3765* Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))

Theoremsbc8g 3766 This is the closest we can get to df-sbc 3759 if we start from dfsbcq 3760 (see its comments) and dfsbcq2 3761. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑}))

Theoremsbc2or 3767* The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [𝐴 / 𝑥]𝜑 behavior at proper classes, matching the sbc5 3786 (false) and sbc6 3788 (true) conclusions. This is interesting since dfsbcq 3760 and dfsbcq2 3761 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem does not tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable 𝑦 that 𝜑 or 𝐴 may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.)
(([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))

Theoremsbcex 3768 By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.)
([𝐴 / 𝑥]𝜑𝐴 ∈ V)

Theoremsbceq1a 3769 Equality theorem for class substitution. Class version of sbequ12 2255. (Contributed by NM, 26-Sep-2003.)
(𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))

Theoremsbceq2a 3770 Equality theorem for class substitution. Class version of sbequ12r 2256. (Contributed by NM, 4-Jan-2017.)
(𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))

Theoremspsbc 3771 Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. This is Frege's ninth axiom per Proposition 58 of [Frege1879] p. 51. See also stdpc4 2074 and rspsbc 3846. (Contributed by NM, 16-Jan-2004.)
(𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))

Theoremspsbcd 3772 Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2074 and rspsbc 3846. (Contributed by Mario Carneiro, 9-Feb-2017.)
(𝜑𝐴𝑉)    &   (𝜑 → ∀𝑥𝜓)       (𝜑[𝐴 / 𝑥]𝜓)

Theoremsbcth 3773 A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.)
𝜑       (𝐴𝑉[𝐴 / 𝑥]𝜑)

Theoremsbcthdv 3774* Deduction version of sbcth 3773. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝜑𝜓)       ((𝜑𝐴𝑉) → [𝐴 / 𝑥]𝜓)

Theoremsbcid 3775 An identity theorem for substitution. See sbid 2259. (Contributed by Mario Carneiro, 18-Feb-2017.)
([𝑥 / 𝑥]𝜑𝜑)

Theoremnfsbc1d 3776 Deduction version of nfsbc1 3777. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
(𝜑𝑥𝐴)       (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓)

Theoremnfsbc1 3777 Bound-variable hypothesis builder for class substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴       𝑥[𝐴 / 𝑥]𝜑

Theoremnfsbc1v 3778* Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.)
𝑥[𝐴 / 𝑥]𝜑

Theoremnfsbcdw 3779* Deduction version of nfsbcw 3780. Version of nfsbcd 3782 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)

Theoremnfsbcw 3780* Bound-variable hypothesis builder for class substitution. Version of nfsbc 3783 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by NM, 7-Sep-2014.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑥𝐴    &   𝑥𝜑       𝑥[𝐴 / 𝑦]𝜑

Theoremsbccow 3781* A composition law for class substitution. Version of sbcco 3784 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 26-Sep-2003.) (Revised by Gino Giotto, 10-Jan-2024.)
([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)

Theoremnfsbcd 3782 Deduction version of nfsbc 3783. Usage of this theorem is discouraged because it depends on ax-13 2392. Use the weaker nfsbcdw 3779 when possible. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)

Theoremnfsbc 3783 Bound-variable hypothesis builder for class substitution. Usage of this theorem is discouraged because it depends on ax-13 2392. Use the weaker nfsbcw 3780 when possible. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.)
𝑥𝐴    &   𝑥𝜑       𝑥[𝐴 / 𝑦]𝜑

Theoremsbcco 3784* A composition law for class substitution. Usage of this theorem is discouraged because it depends on ax-13 2392. Use the weaker sbccow 3781 when possible. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) (New usage is discouraged.)
([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)

Theoremsbcco2 3785* A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝑥 = 𝑦𝐴 = 𝐵)       ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)

Theoremsbc5 3786* An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))

Theoremsbc6g 3787* An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))

Theoremsbc6 3788* An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
𝐴 ∈ V       ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))

Theoremsbc7 3789* An equivalence for class substitution in the spirit of df-clab 2803. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴[𝑦 / 𝑥]𝜑))

Theoremcbvsbcw 3790* Change bound variables in a wff substitution. Version of cbvsbc 3792 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by Jeff Hankins, 19-Sep-2009.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)

Theoremcbvsbcvw 3791* Change the bound variable of a class substitution using implicit substitution. Version of cbvsbcv 3793 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by NM, 30-Sep-2008.) (Revised by Gino Giotto, 10-Jan-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)

Theoremcbvsbc 3792 Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 2392. Use the weaker cbvsbcw 3790 when possible. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)

Theoremcbvsbcv 3793* Change the bound variable of a class substitution using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2392. Use the weaker cbvsbcvw 3791 when possible. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)

Theoremsbciegft 3794* Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3795.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))

Theoremsbciegf 3795* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))

Theoremsbcieg 3796* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))

Theoremsbcie2g 3797* Conversion of implicit substitution to explicit class substitution. This version of sbcie 3798 avoids a disjointness condition on 𝑥, 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑦 = 𝐴 → (𝜓𝜒))       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜒))

Theoremsbcie 3798* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑𝜓)

Theoremsbciedf 3799* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))

Theoremsbcied 3800* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45263
 Copyright terms: Public domain < Previous  Next >