Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imp5p Structured version   Visualization version   GIF version

Theorem imp5p 34500
Description: A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
Hypothesis
Ref Expression
3imp5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
imp5p (𝜑 → (𝜓 → ((𝜒𝜃𝜏) → 𝜂)))

Proof of Theorem imp5p
StepHypRef Expression
1 3imp5.1 . . . 4 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com52l 102 . . 3 (𝜒 → (𝜃 → (𝜏 → (𝜑 → (𝜓𝜂)))))
323imp 1110 . 2 ((𝜒𝜃𝜏) → (𝜑 → (𝜓𝜂)))
43com3l 89 1 (𝜑 → (𝜓 → ((𝜒𝜃𝜏) → 𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator