| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
| 3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13697 addmodlteq 13860 fi1uzind 14421 brfi1indALT 14424 swrdswrdlem 14618 2cshwcshw 14739 lcmfdvdsb 16561 initoeu1 17926 initoeu2lem1 17929 initoeu2 17931 termoeu1 17933 upgrwlkdvdelem 29735 spthonepeq 29751 usgr2pthlem 29762 erclwwlktr 30023 erclwwlkntr 30072 3cyclfrgrrn1 30286 frgrnbnb 30294 frgrncvvdeqlem8 30307 frgrreg 30395 frgrregord013 30396 zerdivemp1x 38060 bgoldbtbndlem4 47970 bgoldbtbnd 47971 tgoldbach 47979 |
| Copyright terms: Public domain | W3C validator |