Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: injresinjlem 13488 addmodlteq 13647 fi1uzind 14192 brfi1indALT 14195 swrdswrdlem 14398 2cshwcshw 14519 lcmfdvdsb 16329 initoeu1 17707 initoeu2lem1 17710 initoeu2 17712 termoeu1 17714 upgrwlkdvdelem 28083 spthonepeq 28099 usgr2pthlem 28110 erclwwlktr 28365 erclwwlkntr 28414 3cyclfrgrrn1 28628 frgrnbnb 28636 frgrncvvdeqlem8 28649 frgrreg 28737 frgrregord013 28738 zerdivemp1x 36084 bgoldbtbndlem4 45212 bgoldbtbnd 45213 tgoldbach 45221 |
Copyright terms: Public domain | W3C validator |