| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
| 3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13755 addmodlteq 13918 fi1uzind 14479 brfi1indALT 14482 swrdswrdlem 14676 2cshwcshw 14798 lcmfdvdsb 16620 initoeu1 17980 initoeu2lem1 17983 initoeu2 17985 termoeu1 17987 upgrwlkdvdelem 29673 spthonepeq 29689 usgr2pthlem 29700 erclwwlktr 29958 erclwwlkntr 30007 3cyclfrgrrn1 30221 frgrnbnb 30229 frgrncvvdeqlem8 30242 frgrreg 30330 frgrregord013 30331 zerdivemp1x 37948 bgoldbtbndlem4 47813 bgoldbtbnd 47814 tgoldbach 47822 |
| Copyright terms: Public domain | W3C validator |