Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: injresinjlem 13580 addmodlteq 13739 fi1uzind 14283 brfi1indALT 14286 swrdswrdlem 14489 2cshwcshw 14610 lcmfdvdsb 16418 initoeu1 17796 initoeu2lem1 17799 initoeu2 17801 termoeu1 17803 upgrwlkdvdelem 28213 spthonepeq 28229 usgr2pthlem 28240 erclwwlktr 28495 erclwwlkntr 28544 3cyclfrgrrn1 28758 frgrnbnb 28766 frgrncvvdeqlem8 28779 frgrreg 28867 frgrregord013 28868 zerdivemp1x 36161 bgoldbtbndlem4 45512 bgoldbtbnd 45513 tgoldbach 45521 |
Copyright terms: Public domain | W3C validator |