MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com15 Structured version   Visualization version   GIF version

Theorem com15 101
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com15 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))

Proof of Theorem com15
StepHypRef Expression
1 com5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com5l 100 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑𝜂)))))
32com4r 94 1 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  injresinjlem  13803  addmodlteq  13964  fi1uzind  14525  brfi1indALT  14528  swrdswrdlem  14722  2cshwcshw  14844  lcmfdvdsb  16662  initoeu1  18024  initoeu2lem1  18027  initoeu2  18029  termoeu1  18031  upgrwlkdvdelem  29718  spthonepeq  29734  usgr2pthlem  29745  erclwwlktr  30003  erclwwlkntr  30052  3cyclfrgrrn1  30266  frgrnbnb  30274  frgrncvvdeqlem8  30287  frgrreg  30375  frgrregord013  30376  zerdivemp1x  37971  bgoldbtbndlem4  47822  bgoldbtbnd  47823  tgoldbach  47831
  Copyright terms: Public domain W3C validator