| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
| 3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13748 addmodlteq 13911 fi1uzind 14472 brfi1indALT 14475 swrdswrdlem 14669 2cshwcshw 14791 lcmfdvdsb 16613 initoeu1 17973 initoeu2lem1 17976 initoeu2 17978 termoeu1 17980 upgrwlkdvdelem 29666 spthonepeq 29682 usgr2pthlem 29693 erclwwlktr 29951 erclwwlkntr 30000 3cyclfrgrrn1 30214 frgrnbnb 30222 frgrncvvdeqlem8 30235 frgrreg 30323 frgrregord013 30324 zerdivemp1x 37941 bgoldbtbndlem4 47809 bgoldbtbnd 47810 tgoldbach 47818 |
| Copyright terms: Public domain | W3C validator |