MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com15 Structured version   Visualization version   GIF version

Theorem com15 101
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com15 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))

Proof of Theorem com15
StepHypRef Expression
1 com5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com5l 100 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑𝜂)))))
32com4r 94 1 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  injresinjlem  13837  addmodlteq  13997  fi1uzind  14556  brfi1indALT  14559  swrdswrdlem  14752  2cshwcshw  14874  lcmfdvdsb  16690  initoeu1  18078  initoeu2lem1  18081  initoeu2  18083  termoeu1  18085  upgrwlkdvdelem  29772  spthonepeq  29788  usgr2pthlem  29799  erclwwlktr  30054  erclwwlkntr  30103  3cyclfrgrrn1  30317  frgrnbnb  30325  frgrncvvdeqlem8  30338  frgrreg  30426  frgrregord013  30427  zerdivemp1x  37907  bgoldbtbndlem4  47682  bgoldbtbnd  47683  tgoldbach  47691
  Copyright terms: Public domain W3C validator