MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com15 Structured version   Visualization version   GIF version

Theorem com15 101
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com15 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))

Proof of Theorem com15
StepHypRef Expression
1 com5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com5l 100 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑𝜂)))))
32com4r 94 1 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  injresinjlem  13685  addmodlteq  13848  fi1uzind  14409  brfi1indALT  14412  swrdswrdlem  14606  2cshwcshw  14727  lcmfdvdsb  16549  initoeu1  17913  initoeu2lem1  17916  initoeu2  17918  termoeu1  17920  upgrwlkdvdelem  29709  spthonepeq  29725  usgr2pthlem  29736  erclwwlktr  29994  erclwwlkntr  30043  3cyclfrgrrn1  30257  frgrnbnb  30265  frgrncvvdeqlem8  30278  frgrreg  30366  frgrregord013  30367  zerdivemp1x  37987  bgoldbtbndlem4  47839  bgoldbtbnd  47840  tgoldbach  47848
  Copyright terms: Public domain W3C validator