MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com15 Structured version   Visualization version   GIF version

Theorem com15 101
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com15 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))

Proof of Theorem com15
StepHypRef Expression
1 com5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com5l 100 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑𝜂)))))
32com4r 94 1 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  injresinjlem  13580  addmodlteq  13739  fi1uzind  14283  brfi1indALT  14286  swrdswrdlem  14489  2cshwcshw  14610  lcmfdvdsb  16418  initoeu1  17796  initoeu2lem1  17799  initoeu2  17801  termoeu1  17803  upgrwlkdvdelem  28213  spthonepeq  28229  usgr2pthlem  28240  erclwwlktr  28495  erclwwlkntr  28544  3cyclfrgrrn1  28758  frgrnbnb  28766  frgrncvvdeqlem8  28779  frgrreg  28867  frgrregord013  28868  zerdivemp1x  36161  bgoldbtbndlem4  45512  bgoldbtbnd  45513  tgoldbach  45521
  Copyright terms: Public domain W3C validator