MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com15 Structured version   Visualization version   GIF version

Theorem com15 101
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com15 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))

Proof of Theorem com15
StepHypRef Expression
1 com5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com5l 100 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑𝜂)))))
32com4r 94 1 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  injresinjlem  13708  addmodlteq  13871  fi1uzind  14432  brfi1indALT  14435  swrdswrdlem  14628  2cshwcshw  14750  lcmfdvdsb  16572  initoeu1  17936  initoeu2lem1  17939  initoeu2  17941  termoeu1  17943  upgrwlkdvdelem  29699  spthonepeq  29715  usgr2pthlem  29726  erclwwlktr  29984  erclwwlkntr  30033  3cyclfrgrrn1  30247  frgrnbnb  30255  frgrncvvdeqlem8  30268  frgrreg  30356  frgrregord013  30357  zerdivemp1x  37926  bgoldbtbndlem4  47793  bgoldbtbnd  47794  tgoldbach  47802
  Copyright terms: Public domain W3C validator