![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: injresinjlem 13837 addmodlteq 13997 fi1uzind 14556 brfi1indALT 14559 swrdswrdlem 14752 2cshwcshw 14874 lcmfdvdsb 16690 initoeu1 18078 initoeu2lem1 18081 initoeu2 18083 termoeu1 18085 upgrwlkdvdelem 29772 spthonepeq 29788 usgr2pthlem 29799 erclwwlktr 30054 erclwwlkntr 30103 3cyclfrgrrn1 30317 frgrnbnb 30325 frgrncvvdeqlem8 30338 frgrreg 30426 frgrregord013 30427 zerdivemp1x 37907 bgoldbtbndlem4 47682 bgoldbtbnd 47683 tgoldbach 47691 |
Copyright terms: Public domain | W3C validator |