| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
| 3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13708 addmodlteq 13871 fi1uzind 14432 brfi1indALT 14435 swrdswrdlem 14628 2cshwcshw 14750 lcmfdvdsb 16572 initoeu1 17936 initoeu2lem1 17939 initoeu2 17941 termoeu1 17943 upgrwlkdvdelem 29699 spthonepeq 29715 usgr2pthlem 29726 erclwwlktr 29984 erclwwlkntr 30033 3cyclfrgrrn1 30247 frgrnbnb 30255 frgrncvvdeqlem8 30268 frgrreg 30356 frgrregord013 30357 zerdivemp1x 37926 bgoldbtbndlem4 47793 bgoldbtbnd 47794 tgoldbach 47802 |
| Copyright terms: Public domain | W3C validator |