MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com15 Structured version   Visualization version   GIF version

Theorem com15 101
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com15 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))

Proof of Theorem com15
StepHypRef Expression
1 com5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com5l 100 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑𝜂)))))
32com4r 94 1 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  injresinjlem  13826  addmodlteq  13987  fi1uzind  14546  brfi1indALT  14549  swrdswrdlem  14742  2cshwcshw  14864  lcmfdvdsb  16680  initoeu1  18056  initoeu2lem1  18059  initoeu2  18061  termoeu1  18063  upgrwlkdvdelem  29756  spthonepeq  29772  usgr2pthlem  29783  erclwwlktr  30041  erclwwlkntr  30090  3cyclfrgrrn1  30304  frgrnbnb  30312  frgrncvvdeqlem8  30325  frgrreg  30413  frgrregord013  30414  zerdivemp1x  37954  bgoldbtbndlem4  47795  bgoldbtbnd  47796  tgoldbach  47804
  Copyright terms: Public domain W3C validator