| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
| 3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13803 addmodlteq 13964 fi1uzind 14525 brfi1indALT 14528 swrdswrdlem 14722 2cshwcshw 14844 lcmfdvdsb 16662 initoeu1 18024 initoeu2lem1 18027 initoeu2 18029 termoeu1 18031 upgrwlkdvdelem 29718 spthonepeq 29734 usgr2pthlem 29745 erclwwlktr 30003 erclwwlkntr 30052 3cyclfrgrrn1 30266 frgrnbnb 30274 frgrncvvdeqlem8 30287 frgrreg 30375 frgrregord013 30376 zerdivemp1x 37971 bgoldbtbndlem4 47822 bgoldbtbnd 47823 tgoldbach 47831 |
| Copyright terms: Public domain | W3C validator |