| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
| 3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13685 addmodlteq 13848 fi1uzind 14409 brfi1indALT 14412 swrdswrdlem 14606 2cshwcshw 14727 lcmfdvdsb 16549 initoeu1 17913 initoeu2lem1 17916 initoeu2 17918 termoeu1 17920 upgrwlkdvdelem 29709 spthonepeq 29725 usgr2pthlem 29736 erclwwlktr 29994 erclwwlkntr 30043 3cyclfrgrrn1 30257 frgrnbnb 30265 frgrncvvdeqlem8 30278 frgrreg 30366 frgrregord013 30367 zerdivemp1x 37987 bgoldbtbndlem4 47839 bgoldbtbnd 47840 tgoldbach 47848 |
| Copyright terms: Public domain | W3C validator |