| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
| 3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13826 addmodlteq 13987 fi1uzind 14546 brfi1indALT 14549 swrdswrdlem 14742 2cshwcshw 14864 lcmfdvdsb 16680 initoeu1 18056 initoeu2lem1 18059 initoeu2 18061 termoeu1 18063 upgrwlkdvdelem 29756 spthonepeq 29772 usgr2pthlem 29783 erclwwlktr 30041 erclwwlkntr 30090 3cyclfrgrrn1 30304 frgrnbnb 30312 frgrncvvdeqlem8 30325 frgrreg 30413 frgrregord013 30414 zerdivemp1x 37954 bgoldbtbndlem4 47795 bgoldbtbnd 47796 tgoldbach 47804 |
| Copyright terms: Public domain | W3C validator |