Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com15 | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com15 | ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com5l 100 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑 → 𝜂))))) |
3 | 2 | com4r 94 | 1 ⊢ (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: injresinjlem 13553 addmodlteq 13712 fi1uzind 14256 brfi1indALT 14259 swrdswrdlem 14462 2cshwcshw 14583 lcmfdvdsb 16393 initoeu1 17771 initoeu2lem1 17774 initoeu2 17776 termoeu1 17778 upgrwlkdvdelem 28149 spthonepeq 28165 usgr2pthlem 28176 erclwwlktr 28431 erclwwlkntr 28480 3cyclfrgrrn1 28694 frgrnbnb 28702 frgrncvvdeqlem8 28715 frgrreg 28803 frgrregord013 28804 zerdivemp1x 36149 bgoldbtbndlem4 45318 bgoldbtbnd 45319 tgoldbach 45327 |
Copyright terms: Public domain | W3C validator |