Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > confun | Structured version Visualization version GIF version |
Description: Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020.) |
Ref | Expression |
---|---|
confun.1 | ⊢ 𝜑 |
confun.2 | ⊢ (𝜒 → 𝜓) |
confun.3 | ⊢ (𝜒 → 𝜃) |
confun.4 | ⊢ (𝜑 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
confun | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
2 | confun.3 | . . . 4 ⊢ (𝜒 → 𝜃) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜒 → (𝜒 → 𝜃)) |
4 | 1, 3 | impbid 211 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜒)) |
5 | confun.2 | . . . . 5 ⊢ (𝜒 → 𝜓) | |
6 | confun.1 | . . . . . . 7 ⊢ 𝜑 | |
7 | confun.4 | . . . . . . 7 ⊢ (𝜑 → (𝜑 → 𝜓)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (𝜑 → 𝜓) |
9 | ax-1 6 | . . . . . . 7 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
10 | 6, 9 | ax-mp 5 | . . . . . 6 ⊢ (𝜓 → 𝜑) |
11 | 8, 10 | impbii 208 | . . . . 5 ⊢ (𝜑 ↔ 𝜓) |
12 | 5, 11 | sylibr 233 | . . . 4 ⊢ (𝜒 → 𝜑) |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜒 → (𝜒 → 𝜑)) |
14 | ax-1 6 | . . 3 ⊢ (𝜒 → (𝜑 → 𝜒)) | |
15 | 13, 14 | impbid 211 | . 2 ⊢ (𝜒 → (𝜒 ↔ 𝜑)) |
16 | 4, 15 | bitrd 278 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: confun2 44435 confun3 44436 |
Copyright terms: Public domain | W3C validator |