| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > confun | Structured version Visualization version GIF version | ||
| Description: Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020.) |
| Ref | Expression |
|---|---|
| confun.1 | ⊢ 𝜑 |
| confun.2 | ⊢ (𝜒 → 𝜓) |
| confun.3 | ⊢ (𝜒 → 𝜃) |
| confun.4 | ⊢ (𝜑 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| confun | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜒)) | |
| 2 | confun.3 | . . . 4 ⊢ (𝜒 → 𝜃) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜒 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | impbid 212 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜒)) |
| 5 | confun.2 | . . . . 5 ⊢ (𝜒 → 𝜓) | |
| 6 | confun.1 | . . . . . . 7 ⊢ 𝜑 | |
| 7 | confun.4 | . . . . . . 7 ⊢ (𝜑 → (𝜑 → 𝜓)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (𝜑 → 𝜓) |
| 9 | ax-1 6 | . . . . . . 7 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
| 10 | 6, 9 | ax-mp 5 | . . . . . 6 ⊢ (𝜓 → 𝜑) |
| 11 | 8, 10 | impbii 209 | . . . . 5 ⊢ (𝜑 ↔ 𝜓) |
| 12 | 5, 11 | sylibr 234 | . . . 4 ⊢ (𝜒 → 𝜑) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜒 → (𝜒 → 𝜑)) |
| 14 | ax-1 6 | . . 3 ⊢ (𝜒 → (𝜑 → 𝜒)) | |
| 15 | 13, 14 | impbid 212 | . 2 ⊢ (𝜒 → (𝜒 ↔ 𝜑)) |
| 16 | 4, 15 | bitrd 279 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: confun2 46886 confun3 46887 |
| Copyright terms: Public domain | W3C validator |