Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  confun3 Structured version   Visualization version   GIF version

Theorem confun3 44436
Description: Confun's more complex form where both a,d have been "defined". (Contributed by Jarvin Udandy, 6-Sep-2020.)
Hypotheses
Ref Expression
confun3.1 (𝜑 ↔ (𝜒𝜓))
confun3.2 (𝜃 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)))
confun3.3 (𝜒𝜓)
confun3.4 (𝜒 → ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)))
confun3.5 ((𝜒𝜓) → ((𝜒𝜓) → 𝜓))
Assertion
Ref Expression
confun3 (𝜒 → (¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)) ↔ (𝜒𝜓)))

Proof of Theorem confun3
StepHypRef Expression
1 confun3.3 . 2 (𝜒𝜓)
2 confun3.4 . 2 (𝜒 → ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)))
3 confun3.5 . 2 ((𝜒𝜓) → ((𝜒𝜓) → 𝜓))
41, 1, 2, 3confun 44434 1 (𝜒 → (¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)) ↔ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator