Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impbid | Structured version Visualization version GIF version |
Description: Deduce an equivalence from two implications. Deduction associated with impbi 207 and impbii 208. (Contributed by NM, 24-Jan-1993.) Revised to prove it from impbid21d 210. (Revised by Wolf Lammen, 3-Nov-2012.) |
Ref | Expression |
---|---|
impbid.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
impbid.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
impbid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | impbid.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
3 | 1, 2 | impbid21d 210 | . 2 ⊢ (𝜑 → (𝜑 → (𝜓 ↔ 𝜒))) |
4 | 3 | pm2.43i 52 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Copyright terms: Public domain | W3C validator |