![]() |
Metamath
Proof Explorer Theorem List (p. 457 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lptioo1cn 45601 | The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | neglimc 45602* | Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) ⇒ ⊢ (𝜑 → -𝐶 ∈ (𝐺 limℂ 𝐷)) | ||
Theorem | addlimc 45603* | Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | 0ellimcdiv 45604* | If the numerator converges to 0 and the denominator converges to a nonzero number, then the fraction converges to 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐸)) & ⊢ (𝜑 → 𝐷 ∈ (𝐺 limℂ 𝐸)) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → 0 ∈ (𝐻 limℂ 𝐸)) | ||
Theorem | clim2cf 45605* | Express the predicate 𝐹 converges to 𝐴. Similar to clim2 15536, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥)) | ||
Theorem | limclner 45606 | For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) & ⊢ (𝜑 → 𝐿 ≠ 𝑅) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ∅) | ||
Theorem | sublimc 45607* | Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 − 𝐼) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | reclimc 45608* | Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (1 / 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (1 / 𝐶) ∈ (𝐺 limℂ 𝐷)) | ||
Theorem | clim0cf 45609* | Express the predicate 𝐹 converges to 0. Similar to clim 15526, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) | ||
Theorem | limclr 45610 | For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) ⇒ ⊢ (𝜑 → (((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵)))) | ||
Theorem | divlimc 45611* | Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ≠ 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | expfac 45612* | Factorial grows faster than exponential. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ 0) | ||
Theorem | climconstmpt 45613* | A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐴) | ||
Theorem | climresmpt 45614* | A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) ⇒ ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) | ||
Theorem | climsubmpt 45615* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) | ||
Theorem | climsubc2mpt 45616* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐵)) | ||
Theorem | climsubc1mpt 45617* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐴 − 𝐶)) | ||
Theorem | fnlimfv 45618* | The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) | ||
Theorem | climreclf 45619* | The limit of a convergent real sequence is real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | climeldmeq 45620* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) | ||
Theorem | climf2 45621* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. Similar to clim 15526, but without the disjoint var constraint 𝜑𝑘 and 𝐹𝑘. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | fnlimcnv 45622* | The sequence of function values converges to the value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) | ||
Theorem | climeldmeqmpt 45623* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑅) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ dom ⇝ )) | ||
Theorem | climfveq 45624* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) | ||
Theorem | clim2f2 45625* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 15526. Similar to clim2 15536, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | climfveqmpt 45626* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑅) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = ( ⇝ ‘(𝑘 ∈ 𝐶 ↦ 𝐷))) | ||
Theorem | climd 45627* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) | ||
Theorem | clim2d 45628* | The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) | ||
Theorem | fnlimfvre 45629* | The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) | ||
Theorem | allbutfifvre 45630* | Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) | ||
Theorem | climleltrp 45631* | The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋))) | ||
Theorem | fnlimfvre2 45632* | The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ∈ ℝ) | ||
Theorem | fnlimf 45633* | The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) | ||
Theorem | fnlimabslt 45634* | A sequence of function values, approximates the corresponding limit function value, all but finitely many times. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) | ||
Theorem | climfveqf 45635* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) | ||
Theorem | climmptf 45636* | Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | ||
Theorem | climfveqmpt3 45637* | Two functions that are eventually equal to one another have the same limit. TODO: this is more general than climfveqmpt 45626 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = ( ⇝ ‘(𝑘 ∈ 𝐶 ↦ 𝐷))) | ||
Theorem | climeldmeqf 45638* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) | ||
Theorem | climreclmpt 45639* | The limit of B convergent real sequence is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ℝ) | ||
Theorem | limsupref 45640* | If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | ||
Theorem | limsupbnd1f 45641* | If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) | ||
Theorem | climbddf 45642* | A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) | ||
Theorem | climeqf 45643* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | ||
Theorem | climeldmeqmpt3 45644* | Two functions that are eventually equal, either both are convergent or both are divergent. TODO: this is more general than climeldmeqmpt 45623 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ dom ⇝ )) | ||
Theorem | limsupcld 45645 | Closure of the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ*) | ||
Theorem | climfv 45646 | The limit of a convergent sequence, expressed as the function value of the convergence relation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝐹 ⇝ 𝐴 → 𝐴 = ( ⇝ ‘𝐹)) | ||
Theorem | limsupval3 45647* | The superior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) | ||
Theorem | climfveqmpt2 45648* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = ( ⇝ ‘(𝑘 ∈ 𝐵 ↦ 𝐶))) | ||
Theorem | limsup0 45649 | The superior limit of the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (lim sup‘∅) = -∞ | ||
Theorem | climeldmeqmpt2 45650* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐵 ↦ 𝐶) ∈ dom ⇝ )) | ||
Theorem | limsupresre 45651 | The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) | ||
Theorem | climeqmpt 45652* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝ 𝐷 ↔ (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝ 𝐷)) | ||
Theorem | climfvd 45653 | The limit of a convergent sequence, expressed as the function value of the convergence relation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = ( ⇝ ‘𝐹)) | ||
Theorem | limsuplesup 45654 | An upper bound for the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐾 ∈ ℝ) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) | ||
Theorem | limsupresico 45655 | The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑍 = (𝑀[,)+∞) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝑍)) = (lim sup‘𝐹)) | ||
Theorem | limsuppnfdlem 45656* | If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) & ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = +∞) | ||
Theorem | limsuppnfd 45657* | If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = +∞) | ||
Theorem | limsupresuz 45658 | If the real part of the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝑍)) = (lim sup‘𝐹)) | ||
Theorem | limsupub 45659* | If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) | ||
Theorem | limsupres 45660 | The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹)) | ||
Theorem | climinf2lem 45661* | A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) | ||
Theorem | climinf2 45662* | A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) | ||
Theorem | limsupvaluz 45663* | The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, < )), ℝ*, < )) | ||
Theorem | limsupresuz2 45664 | If the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → dom 𝐹 ⊆ ℤ) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝑍)) = (lim sup‘𝐹)) | ||
Theorem | limsuppnflem 45665* | If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) | ||
Theorem | limsuppnf 45666* | If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) | ||
Theorem | limsupubuzlem 45667* | If the limsup is not +∞, then the function is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝑋 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → ∀𝑗 ∈ 𝑍 (𝐾 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑌)) & ⊢ 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) & ⊢ 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹‘𝑗)), ℝ, < ) & ⊢ 𝑋 = if(𝑊 ≤ 𝑌, 𝑌, 𝑊) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ≤ 𝑥) | ||
Theorem | limsupubuz 45668* | For a real-valued function on a set of upper integers, if the superior limit is not +∞, then the function is bounded above. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ≤ 𝑥) | ||
Theorem | climinf2mpt 45669* | A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝑘 = 𝑗 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = (𝑘 + 1)) → 𝐶 ≤ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ inf(ran (𝑘 ∈ 𝑍 ↦ 𝐵), ℝ*, < )) | ||
Theorem | climinfmpt 45670* | A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝑘 = 𝑗 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = (𝑘 + 1)) → 𝐶 ≤ 𝐵) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ inf(ran (𝑘 ∈ 𝑍 ↦ 𝐵), ℝ*, < )) | ||
Theorem | climinf3 45671* | A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) | ||
Theorem | limsupvaluzmpt 45672* | The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) | ||
Theorem | limsupequzmpt2 45673* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝐴 & ⊢ Ⅎ𝑗𝐵 & ⊢ 𝐴 = (ℤ≥‘𝑀) & ⊢ 𝐵 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) | ||
Theorem | limsupubuzmpt 45674* | If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ≠ +∞) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) | ||
Theorem | limsupmnflem 45675* | The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) | ||
Theorem | limsupmnf 45676* | The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) | ||
Theorem | limsupequzlem 45677* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) | ||
Theorem | limsupequz 45678* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) | ||
Theorem | limsupre2lem 45679* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)))) | ||
Theorem | limsupre2 45680* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)))) | ||
Theorem | limsupmnfuzlem 45681* | The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) | ||
Theorem | limsupmnfuz 45682* | The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) | ||
Theorem | limsupequzmptlem 45683* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝐴 = (ℤ≥‘𝑀) & ⊢ 𝐵 = (ℤ≥‘𝑁) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) & ⊢ 𝐾 = if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ⇒ ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) | ||
Theorem | limsupequzmpt 45684* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝐴 = (ℤ≥‘𝑀) & ⊢ 𝐵 = (ℤ≥‘𝑁) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) | ||
Theorem | limsupre2mpt 45685* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 < 𝑦)))) | ||
Theorem | limsupequzmptf 45686* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝐴 & ⊢ Ⅎ𝑗𝐵 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝐴 = (ℤ≥‘𝑀) & ⊢ 𝐵 = (ℤ≥‘𝑁) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) | ||
Theorem | limsupre3lem 45687* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)))) | ||
Theorem | limsupre3 45688* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)))) | ||
Theorem | limsupre3mpt 45689* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦)))) | ||
Theorem | limsupre3uzlem 45690* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥))) | ||
Theorem | limsupre3uz 45691* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥))) | ||
Theorem | limsupreuz 45692* | Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ≤ 𝑥))) | ||
Theorem | limsupvaluz2 45693* | The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, < )), ℝ, < )) | ||
Theorem | limsupreuzmpt 45694* | Given a function on the reals, defined on a set of upper integers, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥))) | ||
Theorem | supcnvlimsup 45695* | If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹)) | ||
Theorem | supcnvlimsupmpt 45696* | If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) | ||
Theorem | 0cnv 45697 | If ∅ is a complex number, then it converges to itself. See 0ncn 11170 and its comment; see also the comment in climlimsupcex 45724. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) | ||
Theorem | climuzlem 45698* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) | ||
Theorem | climuz 45699* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) | ||
Theorem | lmbr3v 45700* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |