Home | Metamath
Proof Explorer Theorem List (p. 457 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | scmsuppfi 45601* | The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.) |
⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑆)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) | ||
Theorem | scmfsupp 45602* | A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀)) | ||
Theorem | suppmptcfin 45603* | The support of a mapping with value 0 except of one is finite. (Contributed by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 supp 0 ) ∈ Fin) | ||
Theorem | mptcfsupp 45604* | A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) | ||
Theorem | fsuppmptdmf 45605* | A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | lmodvsmdi 45606 | Multiple distributive law for scalar product (left-distributivity). (Contributed by AV, 5-Sep-2019.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ↑ = (.g‘𝑊) & ⊢ 𝐸 = (.g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · (𝑁 ↑ 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)) | ||
Theorem | gsumlsscl 45607* | Closure of a group sum in a linear subspace: A (finitely supported) sum of scalar multiplications of vectors of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍) → ((𝐹 ∈ (𝐵 ↑m 𝑉) ∧ 𝐹 finSupp (0g‘𝑅)) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣))) ∈ 𝑍)) | ||
Theorem | assaascl0 45608 | The scalar 0 embedded into an associative algebra corresponds to the 0 of the associative algebra. (Contributed by AV, 31-Jul-2019.) |
⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) ⇒ ⊢ (𝜑 → (𝐴‘(0g‘𝐹)) = (0g‘𝑊)) | ||
Theorem | assaascl1 45609 | The scalar 1 embedded into an associative algebra corresponds to the 1 of the an associative algebra. (Contributed by AV, 31-Jul-2019.) |
⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) ⇒ ⊢ (𝜑 → (𝐴‘(1r‘𝐹)) = (1r‘𝑊)) | ||
Theorem | ply1vr1smo 45610 | The variable in a polynomial expressed as scaled monomial. (Contributed by AV, 12-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( 1 · (1 ↑ 𝑋)) = 𝑋) | ||
Theorem | ply1ass23l 45611 | Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) | ||
Theorem | ply1sclrmsm 45612 | The ring multiplication of a polynomial with a scalar polynomial is equal to the scalar multiplication of the polynomial with the corresponding scalar. (Contributed by AV, 14-Aug-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ × = (.r‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((𝐴‘𝐹) × 𝑍) = (𝐹 · 𝑍)) | ||
Theorem | coe1id 45613* | Coefficient vector of the unit polynomial. (Contributed by AV, 9-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐼 = (1r‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (coe1‘𝐼) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 1 , 0 ))) | ||
Theorem | coe1sclmulval 45614 | The value of the coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by AV, 14-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝑆 = ( ·𝑠 ‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) → ((coe1‘(𝑌𝑆𝑍))‘𝑁) = (𝑌 · ((coe1‘𝑍)‘𝑁))) | ||
Theorem | ply1mulgsumlem1 45615* | Lemma 1 for ply1mulgsum 45619. (Contributed by AV, 19-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴‘𝑛) = (0g‘𝑅) ∧ (𝐶‘𝑛) = (0g‘𝑅)))) | ||
Theorem | ply1mulgsumlem2 45616* | Lemma 2 for ply1mulgsum 45619. (Contributed by AV, 19-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅))) | ||
Theorem | ply1mulgsumlem3 45617* | Lemma 3 for ply1mulgsum 45619. (Contributed by AV, 20-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) finSupp (0g‘𝑅)) | ||
Theorem | ply1mulgsumlem4 45618* | Lemma 4 for ply1mulgsum 45619. (Contributed by AV, 19-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑃)) | ||
Theorem | ply1mulgsum 45619* | The product of two polynomials expressed as group sum of scaled monomials. (Contributed by AV, 20-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋))))) | ||
Theorem | evl1at0 45620 | Polynomial evaluation for the 0 scalar. (Contributed by AV, 10-Aug-2019.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ CRing → ((𝑂‘𝑍)‘ 0 ) = 0 ) | ||
Theorem | evl1at1 45621 | Polynomial evaluation for the 1 scalar. (Contributed by AV, 10-Aug-2019.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (1r‘𝑃) ⇒ ⊢ (𝑅 ∈ CRing → ((𝑂‘𝐼)‘ 1 ) = 1 ) | ||
Theorem | linply1 45622 | A term of the form 𝑥 − 𝐶 is a (univariate) polynomial, also called "linear polynomial". (Part of ply1remlem 25232). (Contributed by AV, 3-Jul-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐵) | ||
Theorem | lineval 45623 | A term of the form 𝑥 − 𝐶 evaluated for 𝑥 = 𝑉 results in 𝑉 − 𝐶 (part of ply1remlem 25232). (Contributed by AV, 3-Jul-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑉 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑂‘𝐺)‘𝑉) = (𝑉(-g‘𝑅)𝐶)) | ||
Theorem | linevalexample 45624 | The polynomial 𝑥 − 3 over ℤ evaluated for 𝑥 = 5 results in 2. (Contributed by AV, 3-Jul-2019.) |
⊢ 𝑃 = (Poly1‘ℤring) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑋 = (var1‘ℤring) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘3)) & ⊢ 𝑂 = (eval1‘ℤring) ⇒ ⊢ ((𝑂‘(𝑋 − (𝐴‘3)))‘5) = 2 | ||
In the following, alternative definitions for diagonal and scalar matrices are provided. These definitions define diagonal and scalar matrices as extensible structures, whereas Definitions df-dmat 21547 and df-scmat 21548 define diagonal and scalar matrices as sets. | ||
Syntax | cdmatalt 45625 | Alternative notation for the algebra of diagonal matrices. |
class DMatALT | ||
Syntax | cscmatalt 45626 | Alternative notation for the algebra of scalar matrices. |
class ScMatALT | ||
Definition | df-dmatalt 45627* | Define the set of n x n diagonal (square) matrices over a set (usually a ring) r, see definition in [Roman] p. 4 or Definition 3.12 in [Hefferon] p. 240. (Contributed by AV, 8-Dec-2019.) |
⊢ DMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) | ||
Definition | df-scmatalt 45628* | Define the algebra of n x n scalar matrices over a set (usually a ring) r, see definition in [Connell] p. 57: "A scalar matrix is a diagonal matrix for which all the diagonal terms are equal, i.e., a matrix of the form cIn". (Contributed by AV, 8-Dec-2019.) |
⊢ ScMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟))})) | ||
Theorem | dmatALTval 45629* | The algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅. (Contributed by AV, 8-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMatALT 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) | ||
Theorem | dmatALTbas 45630* | The base set of the algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅, i.e. the set of all 𝑁 x 𝑁 diagonal matrices over the ring 𝑅. (Contributed by AV, 8-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMatALT 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | ||
Theorem | dmatALTbasel 45631* | An element of the base set of the algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅, i.e. an 𝑁 x 𝑁 diagonal matrix over the ring 𝑅. (Contributed by AV, 8-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMatALT 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐷) ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )))) | ||
Theorem | dmatbas 45632 | The set of all 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅 is the base set of the algebra of 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅. (Contributed by AV, 8-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = (Base‘(𝑁 DMatALT 𝑅))) | ||
According to Wikipedia ("Linear combination", 29-Mar-2019,
https://en.wikipedia.org/wiki/Linear_combination) "In mathematics, a
linear combination is an expression constructed from a set of terms by
multiplying each term by a constant and adding the results (e.g., a linear
combination of x and y would be any expression of the form ax + by, where a
and b are constants). The concept of linear combinations is central to
linear algebra and related fields of mathematics." In linear algebra, these
"terms" are "vectors" (elements from vector spaces or left modules), and the
constants are elements of the underlying field resp. ring. This corresponds
to the definition in [Lang] p. 129: "Let M be a module over a ring A and let
S be a subset of M. By a linear combination of elements of S (with
coefficients in A) one means a sum ∑x ∈S
axx where {ax} is a set of elements of A, ...". In the
definition in [Lang] p. 129, it is additionally claimed that "..., almost all
of which [elements of A] are equal to 0.". This is not necessarily required
in the following definition df-linc 45635, but it is essential if additions and
scalar multiplications of linear combinations are considered. Therefore, we
define the set of all linear combinations with finite support in df-lco 45636,
so that we can show that such sets are submodules of the corresponding
modules, see lincolss 45663.
| ||
Syntax | clinc 45633 | Extend class notation with the operation constructing a linear combination (of vectors from a left module). |
class linC | ||
Syntax | clinco 45634 | Extend class notation with the operation constructing a set of linear combinations (of vectors from a left module) with finite support. |
class LinCo | ||
Definition | df-linc 45635* | Define the operation constructing a linear combination. Although this definition is taylored for linear combinations of vectors from left modules, it can be used for any structure having a Base, Scalar s and a scalar multiplication ·𝑠. (Contributed by AV, 29-Mar-2019.) |
⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠 ‘𝑚)𝑥))))) | ||
Definition | df-lco 45636* | Define the operation constructing the set of all linear combinations for a set of vectors. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ LinCo = (𝑚 ∈ V, 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))}) | ||
Theorem | lincop 45637* | A linear combination as operation. (Contributed by AV, 30-Mar-2019.) |
⊢ (𝑀 ∈ 𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠 ‘𝑀)𝑥))))) | ||
Theorem | lincval 45638* | The value of a linear combination. (Contributed by AV, 30-Mar-2019.) |
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠 ‘𝑀)𝑥)))) | ||
Theorem | dflinc2 45639* | Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.) |
⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) | ||
Theorem | lcoop 45640* | A linear combination as operation. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}) | ||
Theorem | lcoval 45641* | The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))) | ||
Theorem | lincfsuppcl 45642 | A linear combination of vectors (with finite support) is a vector. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵) | ||
Theorem | linccl 45643 | A linear combination of vectors is a vector. (Contributed by AV, 31-Mar-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉 ⊆ 𝐵 ∧ 𝑆 ∈ (𝑅 ↑m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) ∈ 𝐵) | ||
Theorem | lincval0 45644 | The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.) |
⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) | ||
Theorem | lincvalsng 45645 | The linear combination over a singleton. (Contributed by AV, 25-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) | ||
Theorem | lincvalsn 45646 | The linear combination over a singleton. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 25-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐹 = {〈𝑉, 𝑌〉} ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝐹( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) | ||
Theorem | lincvalpr 45647 | The linear combination over an unordered pair. (Contributed by AV, 16-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝐹 = {〈𝑉, 𝑋〉, 〈𝑊, 𝑌〉} ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊) ∧ (𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅) ∧ (𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊))) | ||
Theorem | lincval1 45648 | The linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀)) | ||
Theorem | lcosn0 45649 | Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹 ∈ (𝑅 ↑m {𝑉}) ∧ 𝐹 finSupp (0g‘𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀))) | ||
Theorem | lincvalsc0 45650* | The linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) | ||
Theorem | lcoc0 45651* | Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) | ||
Theorem | linc0scn0 45652* | If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 )) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) | ||
Theorem | lincdifsn 45653 | A vector is a linear combination of a set containing this vector. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹‘𝑋) · 𝑋))) | ||
Theorem | linc1 45654* | A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋) | ||
Theorem | lincellss 45655 | A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) | ||
Theorem | lco0 45656 | The set of empty linear combinations over a monoid is the singleton with the identity element of the monoid. (Contributed by AV, 12-Apr-2019.) |
⊢ (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g‘𝑀)}) | ||
Theorem | lcoel0 45657 | The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g‘𝑀) ∈ (𝑀 LinCo 𝑉)) | ||
Theorem | lincsum 45658 | The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ + = (+g‘𝑀) & ⊢ 𝑋 = (𝐴( linC ‘𝑀)𝑉) & ⊢ 𝑌 = (𝐵( linC ‘𝑀)𝑉) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑋 + 𝑌) = ((𝐴 ∘f ✚ 𝐵)( linC ‘𝑀)𝑉)) | ||
Theorem | lincscm 45659* | A linear combinations multiplied with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 9-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ ∙ = ( ·𝑠 ‘𝑀) & ⊢ · = (.r‘(Scalar‘𝑀)) & ⊢ 𝑋 = (𝐴( linC ‘𝑀)𝑉) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ (𝑆 · (𝐴‘𝑥))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 ∙ 𝑋) = (𝐹( linC ‘𝑀)𝑉)) | ||
Theorem | lincsumcl 45660 | The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
⊢ + = (+g‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)) | ||
Theorem | lincscmcl 45661 | The multiplication of a linear combination with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 11-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉)) | ||
Theorem | lincsumscmcl 45662 | The sum of a linear combination and a multiplication of a linear combination with a scalar is a linear combination. (Contributed by AV, 11-Apr-2019.) |
⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ (𝑀 LinCo 𝑉) ∧ 𝐵 ∈ (𝑀 LinCo 𝑉))) → ((𝐶 · 𝐷) + 𝐵) ∈ (𝑀 LinCo 𝑉)) | ||
Theorem | lincolss 45663 | According to the statement in [Lang] p. 129, the set (LSubSp‘𝑀) of all linear combinations of a set of vectors V is a submodule (generated by V) of the module M. The elements of V are called generators of (LSubSp‘𝑀). (Contributed by AV, 12-Apr-2019.) |
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ∈ (LSubSp‘𝑀)) | ||
Theorem | ellcoellss 45664* | Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥 ∈ 𝑆) | ||
Theorem | lcoss 45665 | A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉)) | ||
Theorem | lspsslco 45666 | Lemma for lspeqlco 45668. (Contributed by AV, 17-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ((LSpan‘𝑀)‘𝑉) ⊆ (𝑀 LinCo 𝑉)) | ||
Theorem | lcosslsp 45667 | Lemma for lspeqlco 45668. (Contributed by AV, 20-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) | ||
Theorem | lspeqlco 45668 | Equivalence of a span of a set of vectors of a left module defined as the intersection of all linear subspaces which each contain every vector in that set (see df-lsp 20149) and as the set of all linear combinations of the vectors of the set with finite support. (Contributed by AV, 20-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = ((LSpan‘𝑀)‘𝑉)) | ||
According to the definition in [Lang] p. 129: "A subset S of a module M is said
to be linearly independent (over [the ring] A) if whenever we have a
linear combination ∑x ∈S axx which is equal to
0, then ax=0 for all x∈S." This definition does not care for
the finiteness of the set S (because the definition of a linear combination
in [Lang] p.129 does already assure that only a finite number of coefficients
can be 0 in the sum). Our definition df-lininds 45671 does also neither claim that
the subset must be finite, nor that almost all coefficients within the linear
combination are 0. If this is required, it must be explicitly stated as
precondition in the corresponding theorems. | ||
Syntax | clininds 45669 | Extend class notation with the relation between a module and its linearly independent subsets. |
class linIndS | ||
Syntax | clindeps 45670 | Extend class notation with the relation between a module and its linearly dependent subsets. |
class linDepS | ||
Definition | df-lininds 45671* | Define the relation between a module and its linearly independent subsets. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} | ||
Theorem | rellininds 45672 | The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.) |
⊢ Rel linIndS | ||
Definition | df-lindeps 45673* | Define the relation between a module and its linearly dependent subsets. (Contributed by AV, 26-Apr-2019.) |
⊢ linDepS = {〈𝑠, 𝑚〉 ∣ ¬ 𝑠 linIndS 𝑚} | ||
Theorem | linindsv 45674 | The classes of the module and its linearly independent subsets are sets. (Contributed by AV, 13-Apr-2019.) |
⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V)) | ||
Theorem | islininds 45675* | The property of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
Theorem | linindsi 45676* | The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | ||
Theorem | linindslinci 45677* | The implications of being a linearly independent subset and a linear combination of this subset being 0. (Contributed by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 linIndS 𝑀 ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 ) | ||
Theorem | islinindfis 45678* | The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
Theorem | islinindfiss 45679* | The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | ||
Theorem | linindscl 45680 | A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.) |
⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) | ||
Theorem | lindepsnlininds 45681 | A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) | ||
Theorem | islindeps 45682* | The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸 ↑m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 ))) | ||
Theorem | lincext1 45683* | Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 29-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸 ↑m 𝑆)) | ||
Theorem | lincext2 45684* | Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) | ||
Theorem | lincext3 45685* | Property 3 of an extension of a linear combination. (Contributed by AV, 23-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠 ‘𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = 𝑍) | ||
Theorem | lindslinindsimp1 45686* | Implication 1 for lindslininds 45693. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))) | ||
Theorem | lindslinindimp2lem1 45687* | Lemma 1 for lindslinindsimp2 45692. (Contributed by AV, 25-Apr-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) | ||
Theorem | lindslinindimp2lem2 45688* | Lemma 2 for lindslinindsimp2 45692. (Contributed by AV, 25-Apr-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) | ||
Theorem | lindslinindimp2lem3 45689* | Lemma 3 for lindslinindsimp2 45692. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 ) | ||
Theorem | lindslinindimp2lem4 45690* | Lemma 4 for lindslinindsimp2 45692. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠 ‘𝑀)𝑦))) = (𝑌( ·𝑠 ‘𝑀)𝑥)) | ||
Theorem | lindslinindsimp2lem5 45691* | Lemma 5 for lindslinindsimp2 45692. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓‘𝑥) = 0 ))) | ||
Theorem | lindslinindsimp2 45692* | Implication 2 for lindslininds 45693. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
Theorem | lindslininds 45693 | Equivalence of definitions df-linds 20924 and df-lininds 45671 for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ 𝑆 ∈ (LIndS‘𝑀))) | ||
Theorem | linds0 45694 | The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ (𝑀 ∈ 𝑉 → ∅ linIndS 𝑀) | ||
Theorem | el0ldep 45695 | A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀) | ||
Theorem | el0ldepsnzr 45696 | A set containing the zero element of a module over a nonzero ring is always linearly dependent. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
⊢ (((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀) | ||
Theorem | lindsrng01 45697 | Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20051), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀) | ||
Theorem | lindszr 45698 | Any subset of a module over a zero ring is always linearly independent. (Contributed by AV, 27-Apr-2019.) |
⊢ ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → 𝑆 linIndS 𝑀) | ||
Theorem | snlindsntorlem 45699* | Lemma for snlindsntor 45700. (Contributed by AV, 15-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) | ||
Theorem | snlindsntor 45700* | A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (𝑟 · 𝑚) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists 𝑎 ∈ 𝑅, 𝑎 ≠ 0, such that 𝑎 · 𝑥 = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |