| Metamath
Proof Explorer Theorem List (p. 457 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fprod0 45601* | A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐶 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝑘 = 𝐾 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) | ||
| Theorem | mccllem 45602* | * Induction step for mccl 45603. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (ℕ0 ↑m (𝐶 ∪ {𝐷}))) & ⊢ (𝜑 → ∀𝑏 ∈ (ℕ0 ↑m 𝐶)((!‘Σ𝑘 ∈ 𝐶 (𝑏‘𝑘)) / ∏𝑘 ∈ 𝐶 (!‘(𝑏‘𝑘))) ∈ ℕ) ⇒ ⊢ (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵‘𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵‘𝑘))) ∈ ℕ) | ||
| Theorem | mccl 45603* | A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝐵 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ (ℕ0 ↑m 𝐴)) ⇒ ⊢ (𝜑 → ((!‘Σ𝑘 ∈ 𝐴 (𝐵‘𝑘)) / ∏𝑘 ∈ 𝐴 (!‘(𝐵‘𝑘))) ∈ ℕ) | ||
| Theorem | fprodcnlem 45604* | A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.) Avoid ax-mulf 11155. (Revised by GG, 19-Apr-2025.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | fprodcn 45605* | A finite product of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | clim1fr1 45606* | A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
| Theorem | isumneg 45607* | Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 -𝐴 = -Σ𝑘 ∈ 𝑍 𝐴) | ||
| Theorem | climrec 45608* | Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) | ||
| Theorem | climmulf 45609* | A version of climmul 15606 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) | ||
| Theorem | climexp 45610* | The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) | ||
| Theorem | climinf 45611* | A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) | ||
| Theorem | climsuselem1 45612* | The subsequence index 𝐼 has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → (𝐼‘𝑀) ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ≥‘((𝐼‘𝑘) + 1))) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝐼‘𝐾) ∈ (ℤ≥‘𝐾)) | ||
| Theorem | climsuse 45613* | A subsequence 𝐺 of a converging sequence 𝐹, converges to the same limit. 𝐼 is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐼 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → (𝐼‘𝑀) ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ≥‘((𝐼‘𝑘) + 1))) & ⊢ (𝜑 → 𝐺 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘(𝐼‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | ||
| Theorem | climrecf 45614* | A version of climrec 45608 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) | ||
| Theorem | climneg 45615* | Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) | ||
| Theorem | climinff 45616* | A version of climinf 45611 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) | ||
| Theorem | climdivf 45617* | Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) | ||
| Theorem | climreeq 45618 | If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.) |
| ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
| Theorem | ellimciota 45619* | An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) & ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) | ||
| Theorem | climaddf 45620* | A version of climadd 15605 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) | ||
| Theorem | mullimc 45621* | Limit of the product of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ (𝐻 limℂ 𝐷)) | ||
| Theorem | ellimcabssub0 45622* | An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐷) ↔ 0 ∈ (𝐺 limℂ 𝐷))) | ||
| Theorem | limcdm0 45623 | If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:∅⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) | ||
| Theorem | islptre 45624* | An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ* ∀𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))) | ||
| Theorem | limccog 45625 | Limit of the composition of two functions. If the limit of 𝐹 at 𝐴 is 𝐵 and the limit of 𝐺 at 𝐵 is 𝐶, then the limit of 𝐺 ∘ 𝐹 at 𝐴 is 𝐶. With respect to limcco 25801 and limccnp 25799, here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → ran 𝐹 ⊆ (dom 𝐺 ∖ {𝐵})) & ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐴)) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝐺 ∘ 𝐹) limℂ 𝐴)) | ||
| Theorem | limciccioolb 45626 | The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴) = (𝐹 limℂ 𝐴)) | ||
| Theorem | climf 45627* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. Similar to clim 15467, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
| Theorem | mullimcf 45628* | Limit of the multiplication of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℂ) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) & ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 · 𝐶) ∈ (𝐻 limℂ 𝐷)) | ||
| Theorem | constlimc 45629* | Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) | ||
| Theorem | rexlim2d 45630* | Inference removing two restricted quantifiers. Same as rexlimdvv 3194, but with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | ||
| Theorem | idlimc 45631* | Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑥) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝑋)) | ||
| Theorem | divcnvg 45632* | The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (𝐴 / 𝑛)) ⇝ 0) | ||
| Theorem | limcperiod 45633* | If 𝐹 is a periodic function with period 𝑇, the limit doesn't change if we shift the limiting point by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 + 𝑇)} & ⊢ (𝜑 → 𝐵 ⊆ dom 𝐹) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) & ⊢ (𝜑 → 𝐶 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝐹 ↾ 𝐵) limℂ (𝐷 + 𝑇))) | ||
| Theorem | limcrecl 45634 | If 𝐹 is a real-valued function, 𝐵 is a limit point of its domain, and the limit of 𝐹 at 𝐵 exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐿 ∈ ℝ) | ||
| Theorem | sumnnodd 45635* | A series indexed by ℕ with only odd terms. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → (𝐹‘𝑘) = 0) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐵) ⇒ ⊢ (𝜑 → (seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵 ∧ Σ𝑘 ∈ ℕ (𝐹‘𝑘) = Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1)))) | ||
| Theorem | lptioo2 45636 | The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
| Theorem | lptioo1 45637 | The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
| Theorem | elprn1 45638 | A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → 𝐴 = 𝐶) | ||
| Theorem | elprn2 45639 | A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → 𝐴 = 𝐵) | ||
| Theorem | limcmptdm 45640* | The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ℂ) | ||
| Theorem | clim2f 45641* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 15467. Similar to clim2 15477, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
| Theorem | limcicciooub 45642 | The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵) = (𝐹 limℂ 𝐵)) | ||
| Theorem | ltmod 45643 | A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) ⇒ ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) | ||
| Theorem | islpcn 45644* | A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥 − 𝑃)) < 𝑒)) | ||
| Theorem | lptre2pt 45645* | If a set in the real line has a limit point than it contains two distinct points that are closer than a given distance. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → ((limPt‘𝐽)‘𝐴) ≠ ∅) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (abs‘(𝑥 − 𝑦)) < 𝐸)) | ||
| Theorem | limsupre 45646* | If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.) |
| ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → sup(𝐵, ℝ*, < ) = +∞) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ) & ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | ||
| Theorem | limcresiooub 45647 | The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) limℂ 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) limℂ 𝐶)) | ||
| Theorem | limcresioolb 45648 | The right limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) limℂ 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) limℂ 𝐵)) | ||
| Theorem | limcleqr 45649 | If the left and the right limits are equal, the limit of the function exits and the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) & ⊢ (𝜑 → 𝐿 = 𝑅) ⇒ ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) | ||
| Theorem | lptioo2cn 45650 | The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
| Theorem | lptioo1cn 45651 | The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
| Theorem | neglimc 45652* | Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) ⇒ ⊢ (𝜑 → -𝐶 ∈ (𝐺 limℂ 𝐷)) | ||
| Theorem | addlimc 45653* | Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 limℂ 𝐷)) | ||
| Theorem | 0ellimcdiv 45654* | If the numerator converges to 0 and the denominator converges to a nonzero number, then the fraction converges to 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐸)) & ⊢ (𝜑 → 𝐷 ∈ (𝐺 limℂ 𝐸)) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → 0 ∈ (𝐻 limℂ 𝐸)) | ||
| Theorem | clim2cf 45655* | Express the predicate 𝐹 converges to 𝐴. Similar to clim2 15477, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥)) | ||
| Theorem | limclner 45656 | For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) & ⊢ (𝜑 → 𝐿 ≠ 𝑅) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ∅) | ||
| Theorem | sublimc 45657* | Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 − 𝐼) ∈ (𝐻 limℂ 𝐷)) | ||
| Theorem | reclimc 45658* | Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (1 / 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (1 / 𝐶) ∈ (𝐺 limℂ 𝐷)) | ||
| Theorem | clim0cf 45659* | Express the predicate 𝐹 converges to 0. Similar to clim 15467, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) | ||
| Theorem | limclr 45660 | For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) ⇒ ⊢ (𝜑 → (((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵)))) | ||
| Theorem | divlimc 45661* | Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ≠ 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) | ||
| Theorem | expfac 45662* | Factorial grows faster than exponential. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ 0) | ||
| Theorem | climconstmpt 45663* | A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐴) | ||
| Theorem | climresmpt 45664* | A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) ⇒ ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) | ||
| Theorem | climsubmpt 45665* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) | ||
| Theorem | climsubc2mpt 45666* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐵)) | ||
| Theorem | climsubc1mpt 45667* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐴 − 𝐶)) | ||
| Theorem | fnlimfv 45668* | The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) | ||
| Theorem | climreclf 45669* | The limit of a convergent real sequence is real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | climeldmeq 45670* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) | ||
| Theorem | climf2 45671* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. Similar to clim 15467, but without the disjoint var constraint 𝜑𝑘 and 𝐹𝑘. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
| Theorem | fnlimcnv 45672* | The sequence of function values converges to the value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) | ||
| Theorem | climeldmeqmpt 45673* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑅) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ dom ⇝ )) | ||
| Theorem | climfveq 45674* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) | ||
| Theorem | clim2f2 45675* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 15467. Similar to clim2 15477, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
| Theorem | climfveqmpt 45676* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑅) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = ( ⇝ ‘(𝑘 ∈ 𝐶 ↦ 𝐷))) | ||
| Theorem | climd 45677* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) | ||
| Theorem | clim2d 45678* | The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) | ||
| Theorem | fnlimfvre 45679* | The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) | ||
| Theorem | allbutfifvre 45680* | Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) | ||
| Theorem | climleltrp 45681* | The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋))) | ||
| Theorem | fnlimfvre2 45682* | The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ∈ ℝ) | ||
| Theorem | fnlimf 45683* | The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) | ||
| Theorem | fnlimabslt 45684* | A sequence of function values, approximates the corresponding limit function value, all but finitely many times. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) | ||
| Theorem | climfveqf 45685* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) | ||
| Theorem | climmptf 45686* | Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | ||
| Theorem | climfveqmpt3 45687* | Two functions that are eventually equal to one another have the same limit. TODO: this is more general than climfveqmpt 45676 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = ( ⇝ ‘(𝑘 ∈ 𝐶 ↦ 𝐷))) | ||
| Theorem | climeldmeqf 45688* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) | ||
| Theorem | climreclmpt 45689* | The limit of B convergent real sequence is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ℝ) | ||
| Theorem | limsupref 45690* | If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | ||
| Theorem | limsupbnd1f 45691* | If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) | ||
| Theorem | climbddf 45692* | A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) | ||
| Theorem | climeqf 45693* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | ||
| Theorem | climeldmeqmpt3 45694* | Two functions that are eventually equal, either both are convergent or both are divergent. TODO: this is more general than climeldmeqmpt 45673 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ dom ⇝ )) | ||
| Theorem | limsupcld 45695 | Closure of the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ*) | ||
| Theorem | climfv 45696 | The limit of a convergent sequence, expressed as the function value of the convergence relation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐹 ⇝ 𝐴 → 𝐴 = ( ⇝ ‘𝐹)) | ||
| Theorem | limsupval3 45697* | The superior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) | ||
| Theorem | climfveqmpt2 45698* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = ( ⇝ ‘(𝑘 ∈ 𝐵 ↦ 𝐶))) | ||
| Theorem | limsup0 45699 | The superior limit of the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (lim sup‘∅) = -∞ | ||
| Theorem | climeldmeqmpt2 45700* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐵 ↦ 𝐶) ∈ dom ⇝ )) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |