HomeHome Metamath Proof Explorer
Theorem List (p. 457 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30171)
  Hilbert Space Explorer  Hilbert Space Explorer
(30172-31694)
  Users' Mathboxes  Users' Mathboxes
(31695-47852)
 

Theorem List for Metamath Proof Explorer - 45601-45700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremupwrdfi 45601* There is a finite number of strictly increasing sequences of a given length over finite alphabet. Trivially holds for invalid lengths where there're zero matching sequences. (Contributed by Ender Ting, 5-Jan-2024.)
(𝑆 ∈ Fin β†’ {π‘Ž ∈ UpWord 𝑆 ∣ (β™―β€˜π‘Ž) = 𝑇} ∈ Fin)
 
21.43  Mathbox for Jarvin Udandy
 
TheoremhirstL-ax3 45602 The third axiom of a system called "L" but proven to be a theorem since set.mm uses a different third axiom. This is named hirst after Holly P. Hirst and Jeffry L. Hirst. Axiom A3 of [Mendelson] p. 35. (Contributed by Jarvin Udandy, 7-Feb-2015.) (Proof modification is discouraged.)
((Β¬ πœ‘ β†’ Β¬ πœ“) β†’ ((Β¬ πœ‘ β†’ πœ“) β†’ πœ‘))
 
Theoremax3h 45603 Recover ax-3 8 from hirstL-ax3 45602. (Contributed by Jarvin Udandy, 3-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((Β¬ πœ‘ β†’ Β¬ πœ“) β†’ (πœ“ β†’ πœ‘))
 
Theoremaibandbiaiffaiffb 45604 A closed form showing (a implies b and b implies a) same-as (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.)
(((πœ‘ β†’ πœ“) ∧ (πœ“ β†’ πœ‘)) ↔ (πœ‘ ↔ πœ“))
 
Theoremaibandbiaiaiffb 45605 A closed form showing (a implies b and b implies a) implies (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.)
(((πœ‘ β†’ πœ“) ∧ (πœ“ β†’ πœ‘)) β†’ (πœ‘ ↔ πœ“))
 
Theoremnotatnand 45606 Do not use. Use intnanr instead. Given not a, there exists a proof for not (a and b). (Contributed by Jarvin Udandy, 31-Aug-2016.)
Β¬ πœ‘    β‡’    Β¬ (πœ‘ ∧ πœ“)
 
Theoremaistia 45607 Given a is equivalent to ⊀, there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016.)
(πœ‘ ↔ ⊀)    β‡’   πœ‘
 
Theoremaisfina 45608 Given a is equivalent to βŠ₯, there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016.)
(πœ‘ ↔ βŠ₯)    β‡’    Β¬ πœ‘
 
Theorembothtbothsame 45609 Given both a, b are equivalent to ⊀, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
(πœ‘ ↔ ⊀)    &   (πœ“ ↔ ⊀)    β‡’   (πœ‘ ↔ πœ“)
 
Theorembothfbothsame 45610 Given both a, b are equivalent to βŠ₯, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ βŠ₯)    β‡’   (πœ‘ ↔ πœ“)
 
Theoremaiffbbtat 45611 Given a is equivalent to b, b is equivalent to ⊀ there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)
(πœ‘ ↔ πœ“)    &   (πœ“ ↔ ⊀)    β‡’   (πœ‘ ↔ ⊀)
 
Theoremaisbbisfaisf 45612 Given a is equivalent to b, b is equivalent to βŠ₯ there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016.)
(πœ‘ ↔ πœ“)    &   (πœ“ ↔ βŠ₯)    β‡’   (πœ‘ ↔ βŠ₯)
 
Theoremaxorbtnotaiffb 45613 Given a is exclusive to b, there exists a proof for (not (a if-and-only-if b)); df-xor 1511 is a closed form of this. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ πœ“)    β‡’    Β¬ (πœ‘ ↔ πœ“)
 
Theoremaiffnbandciffatnotciffb 45614 Given a is equivalent to (not b), c is equivalent to a, there exists a proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ Β¬ πœ“)    &   (πœ’ ↔ πœ‘)    β‡’    Β¬ (πœ’ ↔ πœ“)
 
Theoremaxorbciffatcxorb 45615 Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ πœ“)    &   (πœ’ ↔ πœ‘)    β‡’   (πœ’ ⊻ πœ“)
 
Theoremaibnbna 45616 Given a implies b, (not b), there exists a proof for (not a). (Contributed by Jarvin Udandy, 1-Sep-2016.)
(πœ‘ β†’ πœ“)    &    Β¬ πœ“    β‡’    Β¬ πœ‘
 
Theoremaibnbaif 45617 Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016.)
(πœ‘ β†’ πœ“)    &    Β¬ πœ“    β‡’   (πœ‘ ↔ βŠ₯)
 
Theoremaiffbtbat 45618 Given a is equivalent to b, T. is equivalent to b. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)
(πœ‘ ↔ πœ“)    &   (⊀ ↔ πœ“)    β‡’   (πœ‘ ↔ ⊀)
 
Theoremastbstanbst 45619 Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)
(πœ‘ ↔ ⊀)    &   (πœ“ ↔ ⊀)    β‡’   ((πœ‘ ∧ πœ“) ↔ ⊀)
 
Theoremaistbistaandb 45620 Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for (a and b). (Contributed by Jarvin Udandy, 9-Sep-2016.)
(πœ‘ ↔ ⊀)    &   (πœ“ ↔ ⊀)    β‡’   (πœ‘ ∧ πœ“)
 
Theoremaisbnaxb 45621 Given a is equivalent to b, there exists a proof for (not (a xor b)). (Contributed by Jarvin Udandy, 28-Aug-2016.)
(πœ‘ ↔ πœ“)    β‡’    Β¬ (πœ‘ ⊻ πœ“)
 
Theorematbiffatnnb 45622 If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 28-Aug-2016.)
((πœ‘ β†’ πœ“) β†’ (πœ‘ β†’ Β¬ Β¬ πœ“))
 
Theorembisaiaisb 45623 Application of bicom1 with a, b swapped. (Contributed by Jarvin Udandy, 31-Aug-2016.)
((πœ“ ↔ πœ‘) β†’ (πœ‘ ↔ πœ“))
 
Theorematbiffatnnbalt 45624 If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 29-Aug-2016.)
((πœ‘ β†’ πœ“) β†’ (πœ‘ β†’ Β¬ Β¬ πœ“))
 
Theoremabnotbtaxb 45625 Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.)
πœ‘    &    Β¬ πœ“    β‡’   (πœ‘ ⊻ πœ“)
 
Theoremabnotataxb 45626 Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.)
Β¬ πœ‘    &   πœ“    β‡’   (πœ‘ ⊻ πœ“)
 
Theoremconimpf 45627 Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016.)
πœ‘    &    Β¬ πœ“    &   (πœ‘ β†’ πœ“)    β‡’   (πœ‘ ↔ βŠ₯)
 
Theoremconimpfalt 45628 Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 29-Aug-2016.)
πœ‘    &    Β¬ πœ“    &   (πœ‘ β†’ πœ“)    β‡’   (πœ‘ ↔ βŠ₯)
 
Theoremaistbisfiaxb 45629 Given a is equivalent to T., Given b is equivalent to F. there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
(πœ‘ ↔ ⊀)    &   (πœ“ ↔ βŠ₯)    β‡’   (πœ‘ ⊻ πœ“)
 
Theoremaisfbistiaxb 45630 Given a is equivalent to F., Given b is equivalent to T., there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    β‡’   (πœ‘ ⊻ πœ“)
 
Theoremaifftbifffaibif 45631 Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.)
(πœ‘ ↔ ⊀)    &   (πœ“ ↔ βŠ₯)    β‡’   ((πœ‘ β†’ πœ“) ↔ βŠ₯)
 
Theoremaifftbifffaibifff 45632 Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a iff b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.)
(πœ‘ ↔ ⊀)    &   (πœ“ ↔ βŠ₯)    β‡’   ((πœ‘ ↔ πœ“) ↔ βŠ₯)
 
Theorematnaiana 45633 Given a, it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.)
πœ‘    β‡’    Β¬ (πœ‘ β†’ (πœ‘ ∧ Β¬ πœ‘))
 
Theoremainaiaandna 45634 Given a, a implies it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.)
πœ‘    β‡’   (πœ‘ β†’ Β¬ (πœ‘ β†’ (πœ‘ ∧ Β¬ πœ‘)))
 
Theoremabcdta 45635 Given (((a and b) and c) and d), there exists a proof for a. (Contributed by Jarvin Udandy, 3-Sep-2016.)
(((πœ‘ ∧ πœ“) ∧ πœ’) ∧ πœƒ)    β‡’   πœ‘
 
Theoremabcdtb 45636 Given (((a and b) and c) and d), there exists a proof for b. (Contributed by Jarvin Udandy, 3-Sep-2016.)
(((πœ‘ ∧ πœ“) ∧ πœ’) ∧ πœƒ)    β‡’   πœ“
 
Theoremabcdtc 45637 Given (((a and b) and c) and d), there exists a proof for c. (Contributed by Jarvin Udandy, 3-Sep-2016.)
(((πœ‘ ∧ πœ“) ∧ πœ’) ∧ πœƒ)    β‡’   πœ’
 
Theoremabcdtd 45638 Given (((a and b) and c) and d), there exists a proof for d. (Contributed by Jarvin Udandy, 3-Sep-2016.)
(((πœ‘ ∧ πœ“) ∧ πœ’) ∧ πœƒ)    β‡’   πœƒ
 
Theoremabciffcbatnabciffncba 45639 Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. Closed form. (Contributed by Jarvin Udandy, 7-Sep-2020.)
(Β¬ ((πœ‘ ∧ πœ“) ∧ πœ’) β†’ Β¬ ((πœ’ ∧ πœ“) ∧ πœ‘))
 
Theoremabciffcbatnabciffncbai 45640 Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. (Contributed by Jarvin Udandy, 7-Sep-2020.)
(((πœ‘ ∧ πœ“) ∧ πœ’) ↔ ((πœ’ ∧ πœ“) ∧ πœ‘))    β‡’   (Β¬ ((πœ‘ ∧ πœ“) ∧ πœ’) β†’ Β¬ ((πœ’ ∧ πœ“) ∧ πœ‘))
 
Theoremnabctnabc 45641 not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020.)
Β¬ (πœ‘ β†’ (πœ“ ∧ πœ’))    β‡’   (Β¬ πœ‘ β†’ (πœ“ ∧ πœ’))
 
Theoremjabtaib 45642 For when pm3.4 lacks a pm3.4i. (Contributed by Jarvin Udandy, 9-Sep-2020.)
(πœ‘ ∧ πœ“)    β‡’   (πœ‘ β†’ πœ“)
 
Theoremonenotinotbothi 45643 From one negated implication it is not the case its nonnegated form and a random others are both true. (Contributed by Jarvin Udandy, 11-Sep-2020.)
Β¬ (πœ‘ β†’ πœ“)    β‡’    Β¬ ((πœ‘ β†’ πœ“) ∧ (πœ’ β†’ πœƒ))
 
Theoremtwonotinotbothi 45644 From these two negated implications it is not the case their nonnegated forms are both true. (Contributed by Jarvin Udandy, 11-Sep-2020.)
Β¬ (πœ‘ β†’ πœ“)    &    Β¬ (πœ’ β†’ πœƒ)    β‡’    Β¬ ((πœ‘ β†’ πœ“) ∧ (πœ’ β†’ πœƒ))
 
Theoremclifte 45645 show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.)
(πœ‘ ∧ Β¬ πœ’)    &   πœƒ    β‡’   (πœƒ ↔ ((πœ‘ ∧ Β¬ πœ’) ∨ (πœ“ ∧ πœ’)))
 
Theoremcliftet 45646 show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.)
(πœ‘ ∧ πœ’)    &   πœƒ    β‡’   (πœƒ ↔ ((πœ‘ ∧ πœ’) ∨ (πœ“ ∧ Β¬ πœ’)))
 
Theoremclifteta 45647 show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.)
((πœ‘ ∧ Β¬ πœ’) ∨ (πœ“ ∧ πœ’))    &   πœƒ    β‡’   (πœƒ ↔ ((πœ‘ ∧ Β¬ πœ’) ∨ (πœ“ ∧ πœ’)))
 
Theoremcliftetb 45648 show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.)
((πœ‘ ∧ πœ’) ∨ (πœ“ ∧ Β¬ πœ’))    &   πœƒ    β‡’   (πœƒ ↔ ((πœ‘ ∧ πœ’) ∨ (πœ“ ∧ Β¬ πœ’)))
 
Theoremconfun 45649 Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020.)
πœ‘    &   (πœ’ β†’ πœ“)    &   (πœ’ β†’ πœƒ)    &   (πœ‘ β†’ (πœ‘ β†’ πœ“))    β‡’   (πœ’ β†’ (πœƒ ↔ πœ‘))
 
Theoremconfun2 45650 Confun simplified to two propositions. (Contributed by Jarvin Udandy, 6-Sep-2020.)
(πœ“ β†’ πœ‘)    &   (πœ“ β†’ Β¬ (πœ“ β†’ (πœ“ ∧ Β¬ πœ“)))    &   ((πœ“ β†’ πœ‘) β†’ ((πœ“ β†’ πœ‘) β†’ πœ‘))    β‡’   (πœ“ β†’ (Β¬ (πœ“ β†’ (πœ“ ∧ Β¬ πœ“)) ↔ (πœ“ β†’ πœ‘)))
 
Theoremconfun3 45651 Confun's more complex form where both a,d have been "defined". (Contributed by Jarvin Udandy, 6-Sep-2020.)
(πœ‘ ↔ (πœ’ β†’ πœ“))    &   (πœƒ ↔ Β¬ (πœ’ β†’ (πœ’ ∧ Β¬ πœ’)))    &   (πœ’ β†’ πœ“)    &   (πœ’ β†’ Β¬ (πœ’ β†’ (πœ’ ∧ Β¬ πœ’)))    &   ((πœ’ β†’ πœ“) β†’ ((πœ’ β†’ πœ“) β†’ πœ“))    β‡’   (πœ’ β†’ (Β¬ (πœ’ β†’ (πœ’ ∧ Β¬ πœ’)) ↔ (πœ’ β†’ πœ“)))
 
Theoremconfun4 45652 An attempt at derivative. Resisted simplest path to a proof. (Contributed by Jarvin Udandy, 6-Sep-2020.)
πœ‘    &   ((πœ‘ β†’ πœ“) β†’ πœ“)    &   (πœ“ β†’ (πœ‘ β†’ πœ’))    &   ((πœ’ β†’ πœƒ) β†’ ((πœ‘ β†’ πœƒ) ↔ πœ“))    &   (𝜏 ↔ (πœ’ β†’ πœƒ))    &   (πœ‚ ↔ Β¬ (πœ’ β†’ (πœ’ ∧ Β¬ πœ’)))    &   πœ“    &   (πœ’ β†’ πœƒ)    β‡’   (πœ’ β†’ (πœ“ β†’ 𝜏))
 
Theoremconfun5 45653 An attempt at derivative. Resisted simplest path to a proof. Interesting that ch, th, ta, et were all provable. (Contributed by Jarvin Udandy, 7-Sep-2020.)
πœ‘    &   ((πœ‘ β†’ πœ“) β†’ πœ“)    &   (πœ“ β†’ (πœ‘ β†’ πœ’))    &   ((πœ’ β†’ πœƒ) β†’ ((πœ‘ β†’ πœƒ) ↔ πœ“))    &   (𝜏 ↔ (πœ’ β†’ πœƒ))    &   (πœ‚ ↔ Β¬ (πœ’ β†’ (πœ’ ∧ Β¬ πœ’)))    &   πœ“    &   (πœ’ β†’ πœƒ)    β‡’   (πœ’ β†’ (πœ‚ ↔ 𝜏))
 
Theoremplcofph 45654 Given, a,b and a "definition" for c, c is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.)
(πœ’ ↔ ((((πœ‘ ∧ πœ“) ↔ πœ‘) β†’ (πœ‘ ∧ Β¬ (πœ‘ ∧ Β¬ πœ‘))) ∧ (πœ‘ ∧ Β¬ (πœ‘ ∧ Β¬ πœ‘))))    &   πœ‘    &   πœ“    β‡’   πœ’
 
Theorempldofph 45655 Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.)
(𝜏 ↔ ((πœ’ β†’ πœƒ) ∧ (πœ‘ ↔ πœ’) ∧ ((πœ‘ β†’ πœ“) β†’ (πœ“ ↔ πœƒ))))    &   πœ‘    &   πœ“    &   πœ’    &   πœƒ    β‡’   πœ
 
Theoremplvcofph 45656 Given, a,b,d, and "definitions" for c, e, f: f is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.)
(πœ’ ↔ ((((πœ‘ ∧ πœ“) ↔ πœ‘) β†’ (πœ‘ ∧ Β¬ (πœ‘ ∧ Β¬ πœ‘))) ∧ (πœ‘ ∧ Β¬ (πœ‘ ∧ Β¬ πœ‘))))    &   (𝜏 ↔ ((πœ’ β†’ πœƒ) ∧ (πœ‘ ↔ πœ’) ∧ ((πœ‘ β†’ πœ“) β†’ (πœ“ ↔ πœƒ))))    &   (πœ‚ ↔ (πœ’ ∧ 𝜏))    &   πœ‘    &   πœ“    &   πœƒ    β‡’   πœ‚
 
Theoremplvcofphax 45657 Given, a,b,d, and "definitions" for c, e, f, g: g is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.)
(πœ’ ↔ ((((πœ‘ ∧ πœ“) ↔ πœ‘) β†’ (πœ‘ ∧ Β¬ (πœ‘ ∧ Β¬ πœ‘))) ∧ (πœ‘ ∧ Β¬ (πœ‘ ∧ Β¬ πœ‘))))    &   (𝜏 ↔ ((πœ’ β†’ πœƒ) ∧ (πœ‘ ↔ πœ’) ∧ ((πœ‘ β†’ πœ“) β†’ (πœ“ ↔ πœƒ))))    &   (πœ‚ ↔ (πœ’ ∧ 𝜏))    &   πœ‘    &   πœ“    &   πœƒ    &   (𝜁 ↔ Β¬ (πœ“ ∧ Β¬ 𝜏))    β‡’   πœ
 
Theoremplvofpos 45658 rh is derivable because ONLY one of ch, th, ta, et is implied by mu. (Contributed by Jarvin Udandy, 11-Sep-2020.)
(πœ’ ↔ (Β¬ πœ‘ ∧ Β¬ πœ“))    &   (πœƒ ↔ (Β¬ πœ‘ ∧ πœ“))    &   (𝜏 ↔ (πœ‘ ∧ Β¬ πœ“))    &   (πœ‚ ↔ (πœ‘ ∧ πœ“))    &   (𝜁 ↔ (((((Β¬ ((πœ‡ β†’ πœ’) ∧ (πœ‡ β†’ πœƒ)) ∧ Β¬ ((πœ‡ β†’ πœ’) ∧ (πœ‡ β†’ 𝜏))) ∧ Β¬ ((πœ‡ β†’ πœ’) ∧ (πœ’ β†’ πœ‚))) ∧ Β¬ ((πœ‡ β†’ πœƒ) ∧ (πœ‡ β†’ 𝜏))) ∧ Β¬ ((πœ‡ β†’ πœƒ) ∧ (πœ‡ β†’ πœ‚))) ∧ Β¬ ((πœ‡ β†’ 𝜏) ∧ (πœ‡ β†’ πœ‚))))    &   (𝜎 ↔ (((πœ‡ β†’ πœ’) ∨ (πœ‡ β†’ πœƒ)) ∨ ((πœ‡ β†’ 𝜏) ∨ (πœ‡ β†’ πœ‚))))    &   (𝜌 ↔ (𝜁 ∧ 𝜎))    &   πœ    &   πœŽ    β‡’   πœŒ
 
Theoremmdandyv0 45659 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ βŠ₯)    &   (πœƒ ↔ βŠ₯)    &   (𝜏 ↔ βŠ₯)    &   (πœ‚ ↔ βŠ₯)    β‡’   ((((πœ’ ↔ πœ‘) ∧ (πœƒ ↔ πœ‘)) ∧ (𝜏 ↔ πœ‘)) ∧ (πœ‚ ↔ πœ‘))
 
Theoremmdandyv1 45660 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ ⊀)    &   (πœƒ ↔ βŠ₯)    &   (𝜏 ↔ βŠ₯)    &   (πœ‚ ↔ βŠ₯)    β‡’   ((((πœ’ ↔ πœ“) ∧ (πœƒ ↔ πœ‘)) ∧ (𝜏 ↔ πœ‘)) ∧ (πœ‚ ↔ πœ‘))
 
Theoremmdandyv2 45661 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ βŠ₯)    &   (πœƒ ↔ ⊀)    &   (𝜏 ↔ βŠ₯)    &   (πœ‚ ↔ βŠ₯)    β‡’   ((((πœ’ ↔ πœ‘) ∧ (πœƒ ↔ πœ“)) ∧ (𝜏 ↔ πœ‘)) ∧ (πœ‚ ↔ πœ‘))
 
Theoremmdandyv3 45662 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ ⊀)    &   (πœƒ ↔ ⊀)    &   (𝜏 ↔ βŠ₯)    &   (πœ‚ ↔ βŠ₯)    β‡’   ((((πœ’ ↔ πœ“) ∧ (πœƒ ↔ πœ“)) ∧ (𝜏 ↔ πœ‘)) ∧ (πœ‚ ↔ πœ‘))
 
Theoremmdandyv4 45663 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ βŠ₯)    &   (πœƒ ↔ βŠ₯)    &   (𝜏 ↔ ⊀)    &   (πœ‚ ↔ βŠ₯)    β‡’   ((((πœ’ ↔ πœ‘) ∧ (πœƒ ↔ πœ‘)) ∧ (𝜏 ↔ πœ“)) ∧ (πœ‚ ↔ πœ‘))
 
Theoremmdandyv5 45664 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ ⊀)    &   (πœƒ ↔ βŠ₯)    &   (𝜏 ↔ ⊀)    &   (πœ‚ ↔ βŠ₯)    β‡’   ((((πœ’ ↔ πœ“) ∧ (πœƒ ↔ πœ‘)) ∧ (𝜏 ↔ πœ“)) ∧ (πœ‚ ↔ πœ‘))
 
Theoremmdandyv6 45665 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ βŠ₯)    &   (πœƒ ↔ ⊀)    &   (𝜏 ↔ ⊀)    &   (πœ‚ ↔ βŠ₯)    β‡’   ((((πœ’ ↔ πœ‘) ∧ (πœƒ ↔ πœ“)) ∧ (𝜏 ↔ πœ“)) ∧ (πœ‚ ↔ πœ‘))
 
Theoremmdandyv7 45666 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ ⊀)    &   (πœƒ ↔ ⊀)    &   (𝜏 ↔ ⊀)    &   (πœ‚ ↔ βŠ₯)    β‡’   ((((πœ’ ↔ πœ“) ∧ (πœƒ ↔ πœ“)) ∧ (𝜏 ↔ πœ“)) ∧ (πœ‚ ↔ πœ‘))
 
Theoremmdandyv8 45667 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ βŠ₯)    &   (πœƒ ↔ βŠ₯)    &   (𝜏 ↔ βŠ₯)    &   (πœ‚ ↔ ⊀)    β‡’   ((((πœ’ ↔ πœ‘) ∧ (πœƒ ↔ πœ‘)) ∧ (𝜏 ↔ πœ‘)) ∧ (πœ‚ ↔ πœ“))
 
Theoremmdandyv9 45668 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ ⊀)    &   (πœƒ ↔ βŠ₯)    &   (𝜏 ↔ βŠ₯)    &   (πœ‚ ↔ ⊀)    β‡’   ((((πœ’ ↔ πœ“) ∧ (πœƒ ↔ πœ‘)) ∧ (𝜏 ↔ πœ‘)) ∧ (πœ‚ ↔ πœ“))
 
Theoremmdandyv10 45669 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ βŠ₯)    &   (πœƒ ↔ ⊀)    &   (𝜏 ↔ βŠ₯)    &   (πœ‚ ↔ ⊀)    β‡’   ((((πœ’ ↔ πœ‘) ∧ (πœƒ ↔ πœ“)) ∧ (𝜏 ↔ πœ‘)) ∧ (πœ‚ ↔ πœ“))
 
Theoremmdandyv11 45670 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ ⊀)    &   (πœƒ ↔ ⊀)    &   (𝜏 ↔ βŠ₯)    &   (πœ‚ ↔ ⊀)    β‡’   ((((πœ’ ↔ πœ“) ∧ (πœƒ ↔ πœ“)) ∧ (𝜏 ↔ πœ‘)) ∧ (πœ‚ ↔ πœ“))
 
Theoremmdandyv12 45671 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ βŠ₯)    &   (πœƒ ↔ βŠ₯)    &   (𝜏 ↔ ⊀)    &   (πœ‚ ↔ ⊀)    β‡’   ((((πœ’ ↔ πœ‘) ∧ (πœƒ ↔ πœ‘)) ∧ (𝜏 ↔ πœ“)) ∧ (πœ‚ ↔ πœ“))
 
Theoremmdandyv13 45672 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ ⊀)    &   (πœƒ ↔ βŠ₯)    &   (𝜏 ↔ ⊀)    &   (πœ‚ ↔ ⊀)    β‡’   ((((πœ’ ↔ πœ“) ∧ (πœƒ ↔ πœ‘)) ∧ (𝜏 ↔ πœ“)) ∧ (πœ‚ ↔ πœ“))
 
Theoremmdandyv14 45673 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ βŠ₯)    &   (πœƒ ↔ ⊀)    &   (𝜏 ↔ ⊀)    &   (πœ‚ ↔ ⊀)    β‡’   ((((πœ’ ↔ πœ‘) ∧ (πœƒ ↔ πœ“)) ∧ (𝜏 ↔ πœ“)) ∧ (πœ‚ ↔ πœ“))
 
Theoremmdandyv15 45674 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
(πœ‘ ↔ βŠ₯)    &   (πœ“ ↔ ⊀)    &   (πœ’ ↔ ⊀)    &   (πœƒ ↔ ⊀)    &   (𝜏 ↔ ⊀)    &   (πœ‚ ↔ ⊀)    β‡’   ((((πœ’ ↔ πœ“) ∧ (πœƒ ↔ πœ“)) ∧ (𝜏 ↔ πœ“)) ∧ (πœ‚ ↔ πœ“))
 
Theoremmdandyvr0 45675 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ↔ 𝜁) ∧ (πœƒ ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (πœ‚ ↔ 𝜁))
 
Theoremmdandyvr1 45676 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ↔ 𝜎) ∧ (πœƒ ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (πœ‚ ↔ 𝜁))
 
Theoremmdandyvr2 45677 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ↔ 𝜁) ∧ (πœƒ ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (πœ‚ ↔ 𝜁))
 
Theoremmdandyvr3 45678 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ↔ 𝜎) ∧ (πœƒ ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (πœ‚ ↔ 𝜁))
 
Theoremmdandyvr4 45679 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ↔ 𝜁) ∧ (πœƒ ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (πœ‚ ↔ 𝜁))
 
Theoremmdandyvr5 45680 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ↔ 𝜎) ∧ (πœƒ ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (πœ‚ ↔ 𝜁))
 
Theoremmdandyvr6 45681 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ↔ 𝜁) ∧ (πœƒ ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (πœ‚ ↔ 𝜁))
 
Theoremmdandyvr7 45682 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ↔ 𝜎) ∧ (πœƒ ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (πœ‚ ↔ 𝜁))
 
Theoremmdandyvr8 45683 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ“)    β‡’   ((((πœ’ ↔ 𝜁) ∧ (πœƒ ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (πœ‚ ↔ 𝜎))
 
Theoremmdandyvr9 45684 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ“)    β‡’   ((((πœ’ ↔ 𝜎) ∧ (πœƒ ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (πœ‚ ↔ 𝜎))
 
Theoremmdandyvr10 45685 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ“)    β‡’   ((((πœ’ ↔ 𝜁) ∧ (πœƒ ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (πœ‚ ↔ 𝜎))
 
Theoremmdandyvr11 45686 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ“)    β‡’   ((((πœ’ ↔ 𝜎) ∧ (πœƒ ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (πœ‚ ↔ 𝜎))
 
Theoremmdandyvr12 45687 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ“)    β‡’   ((((πœ’ ↔ 𝜁) ∧ (πœƒ ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (πœ‚ ↔ 𝜎))
 
Theoremmdandyvr13 45688 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ“)    β‡’   ((((πœ’ ↔ 𝜎) ∧ (πœƒ ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (πœ‚ ↔ 𝜎))
 
Theoremmdandyvr14 45689 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ“)    β‡’   ((((πœ’ ↔ 𝜁) ∧ (πœƒ ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (πœ‚ ↔ 𝜎))
 
Theoremmdandyvr15 45690 Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ↔ 𝜁)    &   (πœ“ ↔ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ“)    β‡’   ((((πœ’ ↔ 𝜎) ∧ (πœƒ ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (πœ‚ ↔ 𝜎))
 
Theoremmdandyvrx0 45691 Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ 𝜁)    &   (πœ“ ⊻ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ⊻ 𝜁) ∧ (πœƒ ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (πœ‚ ⊻ 𝜁))
 
Theoremmdandyvrx1 45692 Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ 𝜁)    &   (πœ“ ⊻ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ⊻ 𝜎) ∧ (πœƒ ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (πœ‚ ⊻ 𝜁))
 
Theoremmdandyvrx2 45693 Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ 𝜁)    &   (πœ“ ⊻ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ⊻ 𝜁) ∧ (πœƒ ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (πœ‚ ⊻ 𝜁))
 
Theoremmdandyvrx3 45694 Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ 𝜁)    &   (πœ“ ⊻ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ⊻ 𝜎) ∧ (πœƒ ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (πœ‚ ⊻ 𝜁))
 
Theoremmdandyvrx4 45695 Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ 𝜁)    &   (πœ“ ⊻ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ⊻ 𝜁) ∧ (πœƒ ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (πœ‚ ⊻ 𝜁))
 
Theoremmdandyvrx5 45696 Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ 𝜁)    &   (πœ“ ⊻ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ⊻ 𝜎) ∧ (πœƒ ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (πœ‚ ⊻ 𝜁))
 
Theoremmdandyvrx6 45697 Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ 𝜁)    &   (πœ“ ⊻ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ⊻ 𝜁) ∧ (πœƒ ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (πœ‚ ⊻ 𝜁))
 
Theoremmdandyvrx7 45698 Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ 𝜁)    &   (πœ“ ⊻ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ“)    &   (𝜏 ↔ πœ“)    &   (πœ‚ ↔ πœ‘)    β‡’   ((((πœ’ ⊻ 𝜎) ∧ (πœƒ ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (πœ‚ ⊻ 𝜁))
 
Theoremmdandyvrx8 45699 Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ 𝜁)    &   (πœ“ ⊻ 𝜎)    &   (πœ’ ↔ πœ‘)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ“)    β‡’   ((((πœ’ ⊻ 𝜁) ∧ (πœƒ ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (πœ‚ ⊻ 𝜎))
 
Theoremmdandyvrx9 45700 Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
(πœ‘ ⊻ 𝜁)    &   (πœ“ ⊻ 𝜎)    &   (πœ’ ↔ πœ“)    &   (πœƒ ↔ πœ‘)    &   (𝜏 ↔ πœ‘)    &   (πœ‚ ↔ πœ“)    β‡’   ((((πœ’ ⊻ 𝜎) ∧ (πœƒ ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (πœ‚ ⊻ 𝜎))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47852
  Copyright terms: Public domain < Previous  Next >