|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > confun4 | Structured version Visualization version GIF version | ||
| Description: An attempt at derivative. Resisted simplest path to a proof. (Contributed by Jarvin Udandy, 6-Sep-2020.) | 
| Ref | Expression | 
|---|---|
| confun4.1 | ⊢ 𝜑 | 
| confun4.2 | ⊢ ((𝜑 → 𝜓) → 𝜓) | 
| confun4.3 | ⊢ (𝜓 → (𝜑 → 𝜒)) | 
| confun4.4 | ⊢ ((𝜒 → 𝜃) → ((𝜑 → 𝜃) ↔ 𝜓)) | 
| confun4.5 | ⊢ (𝜏 ↔ (𝜒 → 𝜃)) | 
| confun4.6 | ⊢ (𝜂 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) | 
| confun4.7 | ⊢ 𝜓 | 
| confun4.8 | ⊢ (𝜒 → 𝜃) | 
| Ref | Expression | 
|---|---|
| confun4 | ⊢ (𝜒 → (𝜓 → 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | confun4.1 | . . . 4 ⊢ 𝜑 | |
| 2 | confun4.7 | . . . . 5 ⊢ 𝜓 | |
| 3 | confun4.3 | . . . . 5 ⊢ (𝜓 → (𝜑 → 𝜒)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (𝜑 → 𝜒) | 
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ 𝜒 | 
| 6 | confun4.8 | . . . . . 6 ⊢ (𝜒 → 𝜃) | |
| 7 | confun4.5 | . . . . . . . 8 ⊢ (𝜏 ↔ (𝜒 → 𝜃)) | |
| 8 | bicom1 221 | . . . . . . . 8 ⊢ ((𝜏 ↔ (𝜒 → 𝜃)) → ((𝜒 → 𝜃) ↔ 𝜏)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ ((𝜒 → 𝜃) ↔ 𝜏) | 
| 10 | 9 | biimpi 216 | . . . . . 6 ⊢ ((𝜒 → 𝜃) → 𝜏) | 
| 11 | 6, 10 | ax-mp 5 | . . . . 5 ⊢ 𝜏 | 
| 12 | 2, 11 | pm3.2i 470 | . . . 4 ⊢ (𝜓 ∧ 𝜏) | 
| 13 | pm3.4 809 | . . . 4 ⊢ ((𝜓 ∧ 𝜏) → (𝜓 → 𝜏)) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (𝜓 → 𝜏) | 
| 15 | 5, 14 | pm3.2i 470 | . 2 ⊢ (𝜒 ∧ (𝜓 → 𝜏)) | 
| 16 | pm3.4 809 | . 2 ⊢ ((𝜒 ∧ (𝜓 → 𝜏)) → (𝜒 → (𝜓 → 𝜏))) | |
| 17 | 15, 16 | ax-mp 5 | 1 ⊢ (𝜒 → (𝜓 → 𝜏)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |